2.更改csv文件编码方式为utf-8,或指定python打开该文件所用方式 知道该文件编码方式后有两种方法解决。 方法一:将csv文件选择“另存为”,保存是可以选择编码方式,选择UTF-8 方法二:知道该csv文件编码方式后,程序中指定encoding='该文件编码方式' 例如:data = pd.read_csv('1.csv', encoding=’gbk’) 分类: ...
读取一个url地址,http://127.0.0.1:8000/static/data.csv, 此地址是一个data.csv文件在线下载地址 df3 = pandas.read_csv('http://127.0.0.1:8000/static/data.csv') print(df3) 也可以是一个文件对象 with open('data.csv', encoding='utf8') as fp: df4 = pandas.read_csv(fp) print(df4) s...
2、如果编码格式不是“UTF-8”,如何修改? 记事本——>文件——>另存为,选择UTF-8格式 import pandas as pddf = pd.read_csv("XXX.csv")print(df) 最后,重新导入csv文件,就可以读取数据啦~
df2 = pandas.read_csv(file_path) print(df2) # 读取url地址 df3 = pandas.read_csv('http://127.0.0.1:8000/static/data.csv') print(df3) # 读取文件对象 with open('data.csv', encoding='utf8') as fp: df4 = pandas.read_csv(fp) print(df4) sep: 字段分隔符,默认为, sep 字段分隔符...
在读取CSV文件时,你可以尝试指定正确的编码方式。例如,如果你的CSV文件是以UTF-8编码的,你可以在读取文件时指定encoding='utf-8'。示例代码: import pandas as pd # 指定编码方式为UTF-8 data = pd.read_csv('file.csv', encoding='utf-8') 尝试不同的编码方式如果指定正确的编码方式仍然无法解决问题,你...
importpandasaspddata = pd.read_csv("./2000.csv")2.原因分析 报错截图如下:报错提示在读取这一行出错,错误的原因呢就是这样的,如下所示。报错提示:UnicodeDecodeError: 'utf-8' codec can't decode byte 0xb9 in position 0: invalid start byte ,对应的中文意思就是“utf-8”编解码器无法解码位置0中...
df = pd.read_csv('data.csv', encoding='utf-8') 更多的read_csv()参数 除了io参数之外,read_csv()函数还有许多其他参数,用于控制数据的读取和解析过程。 以下是一些常用的参数: sep:用于指定字段之间的分隔符,默认为逗号。 header:用于指定哪一行作为列名,默认为第一行。
pandas.read_csv 接口用于读取 CSV 格式数据文件,由于它使用非常频繁,功能强大参数众多,所以在这里专门做详细介绍, 我们在使用过程中可以查阅。 读Excel 文件等方法会有很多相同的参数,用法基本一致。 语法 它的语法如下: pd.read_csv(filepath_or_buffer: Union[str, pathlib.Path, IO[~AnyStr]], ...
pandas.read_csv()遇到读进来乱码问题 1.设置encoding='gbk'或者encoding='utf-8'。pandas.read_csv('data.csv',encoding='gbk') 2.如果设置encoding直接报错的话 解决方法是:用记事本打开csv文件,另存为设置编码为utf-8,然后重新读取文件设置encoding='utf-8'就好了。
(df1)# 文件路径对象Pathfile_path=Path(__file__).parent.joinpath('data.csv')df2=pandas.read_csv(file_path)print(df2)# 读取url地址df3=pandas.read_csv('http://127.0.0.1:8000/static/data.csv')print(df3)# 读取文件对象withopen('data.csv',encoding='utf8')asfp:df4=pandas.read_csv(fp...