name_column = df['Name']行的选择:可以使用df.loc[]或df.iloc[]来选择DataFrame中的行,通过标签或位置进行选择。通过标签选择行:row = df.loc[0]通过位置选择行:row = df.iloc[0]条件选择:可以使用布尔条件对DataFrame进行筛选,如df[df['column_name'] > 5]将选择列中大于5
排序sort_index(axis)根据行或列的索引进行排序df.sort_index(axis=0) 分组聚合groupby(by)按照某列进行分组后,应用聚合函数df.groupby('column') 聚合函数agg()聚合函数,如sum()、mean()、count()等df.groupby('column').agg({'value': 'sum'}) ...
索引对象 我们发现,Pandas有个很有用也很特别的东西——就是index索引,它在数据分析中可以起到很大的作用:因为数据往往都是庞大和繁杂的,如果我们直接通过数据本身来进行查找和处理,那么任务就会显得极其繁重。而如果数据有一个对应的值,或者特定的特点,那么就可以快速找到它,这就是索引。 而每个索引对应的数据,就...
df.ix[row_index, column_name] # 选择指定的列 df.filter(items=['column_name1', 'column_name2']) # 选择列名匹配正则表达式的列 df.filter(regex='regex') # 随机选择 n 行数据 df.sample(n=5)数据排序函数说明 df.sort_values(column_name) 按照指定列的值排序; df.sort_values([column_name1...
df.sort_values(by=['Skill','EmpID'],ascending=[True,False]) 按两个差异顺序按两列中的值对df进行排序 首先,数据帧将基于“Skill”列中的值以升序排序。由于JavaScript列中的值Skill相同,因此它将按值EmpID降序排序。 返回类型是一个数据框。它不会修改原始数据框。
的另一个参数.sort_values()是ascending。默认情况下.sort_values()已经ascending设置True。如果您希望 DataFrame 按降序排序,则可以传递False给此参数: >>> 代码语言:javascript 代码运行次数:0 运行 AI代码解释 >>>df.sort_values(...by="city08",...ascending=False...)city08 cylinders fuelType...mpgDat...
loop df[col].items() query from dict 比 pd.Series快得多 Explode Reverse row order, 适用于df.X.plot.barh() melt, wide form-->long form Pivot merge on, suffixes sort_values(by=multiple columns) 比较两个dataframe是否相等 设置max display pd.set_option('display.max_rows', 5) pd.set_op...
(1)使用df.sort_values(by=, ascending=) 参数: by:指定排序参考的键 单个键或者多个键进行排序 ascending:默认升序 ascending=False:降序 ascending=True:升序 如下: 例一: # 按照开盘价大小进行排序 , 使用ascending指定按照大小排序 data.sort_values(by="open", ascending=True).head() 结果: 例二:...
sort_values(by='column name') 根据某个唯一的列名进行排序,如果有其他相同列名则报错。 df4 = pd.DataFrame(np.random.randn(3, 5))print(df4)#按值排序df4_vsort = df4.sort_values(by=0, ascending=False)print(df4_vsort) 0 1 2 3 40-0.579405 1.055458 -2.274356 -1.215769 1.582240 ...
df.sort_values(by=['列1','列2']) 2.2数据排名:df['列名'].rank() 3.数据修改 如果c_adress列的值==‘山东汕头’,则显示为'广东',否则显示为原数据 np.where(df1['c_adress']=='广东汕头','广东',df1['c_adress']) 四、数据选取 1.选取单行:df.loc['行标签']、df.iloc[n:] 2.选取单...