因此,如何实现高效、稳定的长期视觉定位系统便成了本项目尝试解决的问题。 本项目以ORB-SLAM3的双目模式为基础,首先构建ORB特征地图并获得运动轨迹。然后基于目前主流的深度学习特征如SuperPoint、D2-Net等离线构建深度学习特征视觉地图。最后,实现在OBR-SLAM3系统中的定位模式修改,在关键帧中添加深度学习特征约束,实现长...
KPR让SLAM重定位和回环更准确! 2. 摘要 在单目关键帧视觉同时定位与建图(Monocular Keyframe Visual Simultaneous Localization and Mapping, MKVSLAM)框架中,当增量位置跟踪失败时,必须在短时间内恢复全局姿态,这也被称为短期重定位。这一能力对于移动机器人实现可靠导航、构建精确地图以及在人类协作者周围进行精确行为...
全新回环、重定位、子图融合框架震撼来袭! 2. 摘要 视觉SLAM(Simultaneous Localization and Mapping,即时定位与地图构建)是许多自主系统的关键技术。然而,在ORB-SLAM3等多地图SLAM系统中,跟踪丢失会导致产生不连续的子地图。因此,这些系统采用了子地图合并策略。但正如我们所展示的,这些策略并不总是成功的。在本文中,...
四、当跟踪的状态为RECENTLY_LOST,如果有IMU,则用IMU进行状态的辅助预测,保持状态为RECENTLY_LOST不变;否则调用Relocalization函数进行重定位,如果重定位成功,则状态转换为OK,否则状态转换为LOST。这里对重定位函数的实现也做一下说明,其主要基于当前帧从地图里查找候选关键帧,然后基于每个候选帧分别和当前帧进行位姿优化...
ORB-SLAM3是一个先进的同时定位与地图构建(Simultaneous Localization and Mapping,SLAM)系统,实现了基于视觉惯导紧耦合,同时能够对多地图进行复用;另外支持单目/双目/RGB-D作为输入,支持针孔以及鱼眼相机模型。是目前种类最齐全、工程化最好、精度和鲁棒性整体最佳的一个工程框架。
ORB-SLAM2和ORB-SLAM3都是基于单目相机的视觉SLAM(Simultaneous Localization and Mapping,即同时定位与地图构建)系统,但两者在多个方面存在显著的区别。以下是对两者区别的详细分析: 一、特征提取和描述子 ORB-SLAM2:使用ORB(Oriented FAST and Rotated BRIEF)特征和ORB描述子。ORB特征是一种快速且具有旋转不变性的...
ORB-SLAM3 是一个先进的开源视觉同步定位与地图构建(SLAM)系统,能够处理单目、双目和RGB-D相机的视觉、视觉惯性和多地图SLAM。ORB-SLAM3 是第一个可以同时进行视觉、视觉惯性和多地图SLAM的系统。它的独特之处在于其特征驱动的紧密集成的视觉惯性SLAM系统,完全依赖于最大后验估计(MAP),即使在IMU初始化阶段也能实现...
ORB-SLAM解决重定位是用的Epnp;但是他是基于一个标定好的针孔相机模型的,为了继续我们的工作,我们采用独立于相机的ML-pnp算法可以完全从相机模型中解耦,因为他利用投影光线作为输入。相机模型只需要提供一个从像素传递到投影光线的反投影函数,以便能够使用重定位。
ORB-SLAM Atlas 第一个完整的多地图SLAM系统,能够处理视觉和视觉惯性系统,在单目和立体配置.地图集可以表示一组不连续的地图,并在其上平滑地应用所有的制图操作:位置识别、相机重新定位、闭环和精确的无缝地图合并.这允许自动使用和组合在不同时间构建的地图,执行增量多会话SLAM.在原版ORB基础上我们添加了新的地点识别...