open-vocabulary object detection (OVD)可以翻译为“面向开放词汇下的目标检测”,该任务和zero-shot目标检测非常类似,核心思想都是在可见类(base class)的数据上进行训练,然后完成对不可见类(unseen/ target)数据的识别和检测,实际上,除了核心思想类似外,很多论文其实对二者也没有进行很好的区分。 一 定义 OVD是在...
(开集检测系列)OPEN-VOCABULARY OBJECT DETECTION VIA VISION AND LANGUAGE KNOWLEDGE DISTILLATION 不引入caption数据,使用coco数据集,使用CLIP 作为teacher模型蒸馏出Mask RCNN模型的检测能力(主要是训练出Mask RCNN能提取出类无关的box和该box的特征能和CLIP text embedding能很好的match),novel类检测能力通过伪novel类...
如图所示,从2021年第一篇提出Open Vocabulary Object Detection的工作开始,Open Vocabulary的工作数量逐年增加,逐渐成为计算机视觉+自然语言处理,多模态领域的新热点。在过去的两中,针对不同任务的Open Vocabulary工作提出了总计有一百多种方法。 2,这篇综述的特色,以及和相关领域的综述有什么区别? 图2 Open Vocabulary...
帮助视觉特征学习更加完整的语义信息,跟DSES引入dense类别的外部数据集不同,OVD还是用coco,只是用了粗粒度的image-caption标注,这样不用关心target类信息是否包含在caption标注里面,不用人为做一系列剔除等的预操作,感觉更加genelize一些。
【Open-Vocabulary Object Detection的第一个挑战是对本地新类别目标的检测,作者修改了标准的二阶段目标检测器,例如Mask RCNN进行修改,作者替换了它的定位模块,即第二阶段的边界框回归和对于每个感兴趣的区域掩码预测,这些模块只预测所有类别的单个边界框和单个掩码,而不是预测每一个类。这种分类不可知模块可以推广到...
简介:Open-Vocabulary Object Detection (OVD)可以翻译为**“面向开放词汇下的目标检测”,**该任务和 zero-shot object detection 非常类似,核心思想都是在可见类(base class)的数据上进行训练,然后完成对不可见类(unseen/ target)数据的识别和检测,除了核心思想类似外,很多论文其实对二者也没有进行很好的区分。
面向开放词汇的目标检测(OVD)旨在解决传统目标检测任务中面临的局限性,即依赖于有标记的、有限数量的类别数据。OVD的核心思想是在可见类(base class)的数据集上进行训练,然后应用这些模型进行不可见类(unseen/target)数据的识别和检测。与零样本目标检测(zero-shot)类似,OVD也主要基于可见类数据...
Open-vocabulary object detection 是一种目标检测技术,它能够识别任意目标类别,而不只是预先设定好的几...
Paper | Open Vocabulary Object Detection with Pseudo Bounding-Box Labels (ECCV 2022) 1. 写在前面 https://arxiv.org/abs/2111.09452 从经典的OD到OVD的最主要挑战在于现有的OD数据集类别都是有限的,例如最常用的COCO只有80个类,所以对于novel类别的识别会比较困难。
Open Vocabulary Detection Contest - 开放世界目标检测竞赛的官网链接:开放世界目标检测竞赛2023 (360cvgroup.github.io) 在各个竞赛团队的积极参与、中国图象图形学学会与360人工智能研究院的大力支持下,Open Vocabulary Detection Contest - 开放世界目标检测竞赛已经正式结束,在征集各个竞赛团队的许可后,我们将部分优胜...