使用TensorFlow Object Detect API 完成对苹果、香蕉、橙子的目标检测。. Contribute to Huida13/Apple-Banana-Orange-Detection development by creating an account on GitHub.
object_detection/exporter.py", line 187, in _image_tensor_input_placeholder dtype=tf.uint8, shape=input_shape, name='image_tensor') File "/usr/local/lib/python3.6/dist-packages/tensorflow/python/ops/array_ops.py", line 3023, in placeholder raise Traceback (most recent call last): File ...
base_url = 'https://raw.githubusercontent.com/tensorflow/models' base_url += '/master/research/object_detection/data/' label_dir = tf.keras.utils.get_file(fname=filename, origin=base_url + filename, untar=False) label_dir = pathlib.Path(label_dir) return str(label_dir) LABEL_FILENAM...
origin='http://download.tensorflow.org/models/object_detection/'+model_name+'.tar.gz')#返回model_dir == C:\Users\Administrator\.keras\datasets\ssd_mobilenet_v1_coco_2018_01_28model=tf.saved_model.load(r"C:/Users/Administrator/.keras/datasets/ssd_mobilenet_v1_coco_2018_01_28/saved_model...
(8)在 tensorflow_object_detection_api 虚拟环境下安装 COCO API,执行:pip install cython 和 pip install git+https://github.com/philferriere/cocoapi.git#subdirectory=PythonAPI (9)在 tensorflow_object_detection_api 虚拟环境下安装 Object Detection API:到目录 TensorFlow\models\research,复制 object_detecti...
使用tensorflow object detection进行训练检测。 参考原始代码: https://github.com/tensorflow/models/tree/master/research 本文以mobilenet-ssd-v2为例进行处理,通过换模型即可实现faster RCNN等的训练检测。 1、数据整理 对生成的数据集(整理成VOC格式),通过Annotations的数据数进行train、test、val、trainval.txt的生...
TensorFlow Object Detection API 官方的安装步骤较为繁琐,笔者写了一个脚本直接一键安装。 执行git clone https://github.com/CatchZeng/object-detection-api.git 下载仓库,然后到该仓库(下文简称 oda 仓库)目录下,执行以下命令,如果看到如下输出,表示安装成功。 $ conda create -n od python=3.8.5 && conda ac...
(3)下载Tensorflow object detection API https://github.com/tensorflow/models 从github上下载项目(右上角“Clone or download”-"DownloadZIP"),下载到本地目录(避免中文),解压 (4)Protobuf 安装与配置 在https://github.com/google/protobuf/releases 网站中选择windows 版本(最下面),解压后将bin文件夹中的【...
代码:https://github.com/tensorflow/models/tree/master/object_detection Jupyter notebook:https://github.com/tensorflow/models/blob/master/object_detection/object_detection_tutorial.ipynb Cloud ML:https://cloud.google.com/blog/big-data/2017/06/training-an-object-detector-using-cloud-machine-learning...
8、tensorflow-gpu 1.8 不用gpu和话也可以运行,但是训练速度太慢,个人实践的对比结果是:其他条件完全相同,只是CPU与GPU的区别,在CPU上训练要十天左右,而在GPU上只需要三个小时左右。 二、安装Tensorflow object detection API TensorFlow object detection API要求使用其GitHub库中提供的特定目录结构。