两个算法的PSNR比较 NL-Means和BM3D可以说是目前效果最好的去噪算法,其中BM3D甚至宣称它可以得到迄今为止最高的PSNR。从最终的结果也可以看出来,BM3D的效果确实要好于NL-Means,噪声更少,能够更好地恢复出图像的细节。在效果这一点上BM3D胜。无愧于State-of-the-art这一称号。当然,这里进行测试的样本比较少,可能...
非局部均值(NL-means)是近年来提出的一项新型的去噪技术。该方法充分利用了图像中的冗余信息,在去噪的同时能最大程度地保持图像的细节特征。基本思想是:当前像素的估计值由图像中与它具有相似邻域结构的像素加权平均得到。 理论上,该算法需要在整个图像范围内判断像素间的相似度,也就是说,每处理一个像素点时,都要...
NL-meansNL-means(非局部均值)算法 对于某一离散噪声的图像 中的某一像素 ,我们规定 为以 为中心的矩形邻域,那么图像 中的像素 和像素 的高斯加权欧式距离为 其中 为高斯核函数的标准差。 如果我们把含噪图像 表示为待恢复的未受噪声污染时的图像 与均值为0的加性高斯白噪声 的和,则有 ,且噪声服从均值为0...
计算权重、权重和、像素值加权和的核函数代码: __global__voidNLmeansKernel_tex(float*v,float*St,intt1,intt2,intDs,intds,floatd2,floath2,intm,intn,intn1,float*sweight,float*average){int
非局部均值滤波(NL-means)算法的原理与C++实现 我们知道,非局部均值滤波是非常耗时的,这很影响该算法在实际场景中的应用。所以后来有研究人员提出使用积分图来加速该算法,可提升数倍的速度。本文我们将详细讲解该算法的积分图加速原理,并使用C++与Opencv来将其实现。
NL-means算法是用于数字图像降噪的一种非局部均值方法。其核心原理是,对于带噪图像中的每一个像素点v,通过计算其邻域(以v为中心的k*K像素方块)中所有像素点的值的高斯加权平均值之和,来降低噪声。邻域的相似度用欧式距离进行衡量。以下是该算法在C++中的代码实现,对比了原图、添加了高斯噪声和...
NLMeans(4)——IPOL Parameter-Free Fast Pixelwise Non-Local Means Denoising 快速算法 精读 NLM这个都可以实现的。 1.1 基于积分图的Fast NLM-P 降低求patch间欧氏距离的复杂度:积分图。 积分图的计算在常数时间内实现。算法2 先计算所有的积分图,需要D^2次移动,所以共需要操作。 Fist Pass中计算patch之间...
简介:非局部均值滤波算法(NL-means)。非局部均值滤波算法最早于2005年由Buades等人发表在CVPR上,论文原文:A non-local algorithm for image denoising,还有一篇2011年的论文:Non-Local Means Denoising。之后还会继续介绍DCT(离散余弦变换滤波)、TV(全变分滤波)、BM3D(3维块匹配滤波)等算法。
NL-means(非局部均值)算法 对于某一离散噪声的图像 (){(),}viviiI 中的某一像素k,我们规定 k N为以k为中心的矩形邻域,那么图像 v 中的像素 i 和 像素 j 的高斯加权欧式距离为 2 ,2 ||)()(|| ji NvNv 其中 0a 为高斯核函数的标准差。 如果我们把含噪图像 ()vi 表示为待恢复的未受噪声污...
基于K均值聚类NL-MEANS算法的超声图像去噪