综上所述,本代码实现了NeRF的核心结构,具体实现内容包括以下四个部分。 1)定义了NeRF网络结构,包含位置编码和多层全连接网络,输入是位置和视角,输出是颜色和密度。 2)实现了位置编码函数,通过正弦和余弦变换引入高频信息。 3)实现了体积渲染函数,在光线上采样点,查询NeRF网络预测颜色和密度,然后通过加权平均实现整体...
对于合成数据集,我们需要通过指定相机参数来渲染图像,所以得到图像的时候已经知道对应的相机参数,比如像NeRF用到的Blender Lego数据集。常用的渲染软件还有Mitsuba、OpenGL、PyTorch3D、Pyrender等。渲染数据比较简单,但是把得到的相机数据转到NeRF代码坐标系牵扯到坐标系之间的变换,有时候会比较麻烦。 真实数据 对于真实场景,...
在NeRF 中,频率不能太小,否则学不到足够的信息;也不能太大,否则会出现过拟合(出现噪点)的现象。NeRF 通过实验发现了合适的值。 代码实现中:如果直接把位置x输入到MLP得到颜色c,效果并不好,所以引入positional encoding函数γ(x)γ(x)将位置 x 变成一系列 sin 和 cos 的表达式,如果定义了频率 p,那么总共会...
自 NeRF 之后,类 NeRF 的模型就层出不穷:Mip-NeRF 利用椎体而不是射线从而优化精细结构的生成效果;KiloNeRF 采用数以千计的微型多层感知机而不是单个大型多层感知机,降低计算量,实现实时渲染能力;此外 AniNeRF 和 Neural Body 等模型从简短视频帧中学习人体视角变换,得到很好的视角合成和驱动效果;此外,GN...
Pytorch代码实现 渲染 神经辐射场的一个关键组件,是一个可微分渲染,它将由NeRF模型表示的3D表示映射到2D图像。该问题可以表述为一个简单的重构问题 这里的A是可微渲染,x是NeRF模型,b是目标2D图像。代码如下:def render_rays(nerf_model, ray_origins, ray_directions, hn=0, hf=0.5, nb_bins=192): ...
神经辐射场(NeRF)是一种利用神经网络来表示和渲染复杂的三维场景的方法。它可以从一组二维图片中学习出一个连续的三维函数,这个函数可以给出空间中任意位置和方向上的颜色和密度。通过体积渲染的技术,NeRF可以从任意视角合成出逼真的图像,包括透明和半透明物体,以及复
1)首先是加载NeRF运行需要的各种参数(包括所用的数据集、数据类型、输出文件位置、训练轮次、bs、数据采样、训练所用的网络参数、训练形式的选择等)详细说明可见下面的代码注释。 2)[config_parser](run_nerf.py) def config_parser():import configargparseparser = configargpar...
在NERF代码中,数据预处理的部分主要是将输入的2D图像和对应的3D点坐标转换成模型可以接受的输入形式。首先,代码会读取2D图像和对应的相机参数,包括相机内参(焦距、主点)和相机外参(旋转矩阵和平移向量)。然后,代码会将相机内参和图像坐标映射关系转换为射线方程。最后,代码会将2D图像和对应的3D点坐标转换成批量形式的...
综上所述,本代码实现了NeRF的核心结构,具体实现内容包括以下四个部分。 1)定义了NeRF网络结构,包含位置编码和多层全连接网络,输入是位置和视角,输出是颜色和密度。 2)实现了位置编码函数,通过正弦和余弦变换引入高频信息。 3)实现了体积渲染函数,在光线上采样点,查询NeRF网络预测颜色和密度,然后通过加权平均实现整体...
综上所述,本代码实现了NeRF的核心结构,具体实现内容包括以下四个部分。 1)定义了NeRF网络结构,包含位置编码和多层全连接网络,输入是位置和视角,输出是颜色和密度。 2)实现了位置编码函数,通过正弦和余弦变换引入高频信息。 3)实现了体积渲染函数,在光线上采样点,查询NeRF网络预测颜色和密度,然后通过加权平均实现整体...