§ 2. 多变量线性回归 Linear Regression with Multiple Variables 1 多特征值(多变量) Multiple Features(Variables) 首先,举例说明了多特征值(多变量)的情况。在下图的例子中,x1,x2,x3,x4x1,x2,x3,x4都是输入的变量,因为变量个数大于一,所以也称为多变量的情况。 于是引出多变量线性回归的一般假设形式: 2...
1. Multiple features(多维特征) 在机器学习之单变量线性回归(Linear Regression with One Variable)我们提到过的线性回归中,我们只有一个单一特征量(变量)——房屋面积x。我们希望使用这个特征量来预测房子的价格。我们的假设在下图中用蓝线划出: 不妨思考一下,如果我们不仅仅知道房屋面积(作为预测房屋价格的特征量(...
4.5 特征和多项式回归(Features and Polynomial Regression) 在特征选取时,我们也可以自己归纳总结,定义一个新的特征,用来取代或拆分旧的一个或多个特征。比如,对于房屋面积特征来说,我们可以将其拆分为长度和宽度两个特征,反之,我们也可以合并长度和宽度这两个特征为面积这一个特征。 线性回归只能以直线来对数据进行...
令向量θ = [θ0 θ1 θ2 ···θn]T,向量x = [x0 x1 x2 ··· xn]T,利用线性代数的知识我们很容易得到: 多变量梯度下降(Gradient Descent For Multiple Variables) 多变量梯度下降与单变量梯度下降思路基本一致,我们可以先构造出其代价函数J: 我们的目标与在单变量线性回归中一样,找出使得代价函数最...
1.多维特征(Multiple Features)与单变量线性回归不同的是,这里处理的输入是一个n维向量 于是这里的假设可以写为 2.多变量梯度下降(Gradient Descent for Multiple Variables)与单变量类似,不细讲 3.特征放缩和学…
Linear regression with multiple variables(多特征的线型回归)算法实例_梯度下降解法(Gradient DesentMulti)以及正规方程解法(Normal Equation),%第一列为sizeofHouse(feet^2),第二列为numberofbedroom,第三列为priceofHouse12104,3,39990021600,3,32990032400,3,3690004
5.2 多元梯度下降法(Gradient descent for multiple variables) 本节课主要讲解如何设定多元线性回归假设中的参数,重点是如何用梯度下降法来处理多元线性回归。 多元线性回归的梯度下降法与单元线性回归的梯度下降法的区别在于多元线性回归存在多个特征向量,那么在梯度下降法遍历时,就需要遍历每一个特征向量的参数theta的计...
机器学习(三)---多变量线性回归(Linear Regression with Multiple Variables) 同样是预测房价问题 如果有多个特征值 那么这种情况下 假设h表示为 公式可以简化为 两个矩阵相乘 其实就是所有参数和变量相乘再相加 所以矩阵的乘法才会是那样 那么他的代价函数就是 同样是寻找...
多维特征目前为止,我们探讨了单变量/特征的回归模型,现在我们对房价模型增加更多的特征,例如房间数楼层等,构成一个含有多个变量的模型,模型中的特征为 \left( {x_{1}},{x_{2}},...,{x_{n}} \right) 。增添更…
我们的目标和单变量线性回归问题中一样,是要找出使得代价函数最小的一系列参数。多变量线性回归的批量梯度下降算法为: 求导数后得到: (3)向量化计算 向量化计算可以加快计算速度,怎么转化为向量化计算呢? 在多变量情况下,损失函数可以写为: 对theta求导后得到: ...