其中:ℎ𝜃(𝑥) = 𝜃𝑇𝑋 = 𝜃0 + 𝜃1𝑥1 + 𝜃2𝑥2+. . . +𝜃𝑛𝑥𝑛 ,我们的目标和单变量线性回归问题中一样,是要找出使得代价函数最小的一系列参数。多变量线性回归的批量梯度下降算法为: 即: 求导数后得到: (xj(i))是怎么来的?ℎ𝜃(𝑥) = 𝜃𝑇𝑋 = 𝜃...
内积(inner product):上述简化后的公式即为参数向量theta与特征向量X的内积。 5.2 多元梯度下降法(Gradient descent for multiple variables) 本节课主要讲解如何设定多元线性回归假设中的参数,重点是如何用梯度下降法来处理多元线性回归。 多元线性回归的梯度下降法与单元线性回归的梯度下降法的区别在于多元线性回归存在多...
特征和多项式回归(Features and Polynomial Regression) 我们可以通过多种方法来改变我们的假设函数的特征和形式,从而其能帮助我们来拟合非常复杂的函数,甚至是非线性函数,这种方法叫做多项式回归(Polynomial Regression)。 比如有时我们想使用二次方模型(hθ(x) = θ0 + θ1x1 + θ2x22)来拟合我们的数据: 又有时...
1. Multiple features(多维特征) 在机器学习之单变量线性回归(Linear Regression with One Variable)我们提到过的线性回归中,我们只有一个单一特征量(变量)——房屋面积x。我们希望使用这个特征量来预测房子的价格。我们的假设在下图中用蓝线划出: 不妨思考一下,如果我们不仅仅知道房屋面积(作为预测房屋价格的特征量(...
Linear regression with multiple variables(多特征的线型回归)算法实例_梯度下降解法(Gradient DesentMulti)以及正规方程解法(Normal Equation),%第一列为sizeofHouse(feet^2),第二列为numberofbedroom,第三列为priceofHouse12104,3,39990021600,3,32990032400,3,3690004
Machine Learning Andrew Ng -4. Linear Regression with multiple variables 4.1 Multiple features (多特征量) Multiple features (variables) Size (x1)(x_1)(x1) Number of bedrooms(x2)(x_2)(x2) Number of floors(x3)(x_3)(x3) Age of homes(x4)(x_4)(x4) Price(y)(y)(y...
四:多变量线性回归(LinearRegressionwithMultipleVariables) 4.1多维特征4.2多变量梯度下降4.3梯度下降法实践1-特征缩放特征缩放:使用一个方法,将梯度下降的速度变快,让梯度下降收敛所需的循环次数更少。 4.4梯度下降法实践2-学习率 4.5特征和多项式回归线性回归并不适用于所有数据,有时我们需要曲线来适用我们的数据。 4....
4 多变量线性回归(Linear Regression with Multiple Variables) 4.1 多特征(Multiple Features) 对于一个要度量的对象,一般来说会有不同维度的多个特征。比如之前的房屋价格预测例子中,除了房屋的面积大小,可能还有房屋的年限、房屋的层数等等其他特征: 这里由于特征不再只有一个,引入一些新的记号 ...
我们的目标和单变量线性回归问题中一样,是要找出使得代价函数最小的一系列参数。多变量线性回归的批量梯度下降算法为: 求导数后得到: (3)向量化计算 向量化计算可以加快计算速度,怎么转化为向量化计算呢? 在多变量情况下,损失函数可以写为: 对theta求导后得到: ...
多变量线性回归( Linear Regression with Multiple Variables) 多维特征 KaTeX parse error: No such environment: align* at position 8: \begin{̲a̲l̲i̲g̲n̲*̲}̲x_j^{(i)} &= \t… h θ ( x ) = θ 0 + θ 1 x 1 + θ 2 x 2 + θ 3 x 3 + ⋯ + θ n ...