(一)单变量线性回归 Linear Regression with One Variable (二)多变量线性回归 Linear Regression with Multiple Variables (三)逻辑回归 Logistic Regression (四)正则化与过拟合问题 Regularization/The Problem of Overfitting (五)神经网络的表示 Neural Networks:Representation (六)神经网络的学习 Neural Networks:Lear...
吴恩达《Machine Learning》-Linear Regression with Multiple Variables多元线性回归(四),程序员大本营,技术文章内容聚合第一站。
import math; def sum_of_gradient(x, y, thetas): """计算梯度向量,参数分别是x和y轴点坐标数据以及方程参数""" m = len(x); grad0 = 1.0 / m * sum([(thetas[0] + thetas[1] * x[i] - y[i]) for i in range(m)]) grad1 = 1.0 / m * sum([(thetas[0] + thetas[1] *...
1. Multiple features(多维特征) 在机器学习之单变量线性回归(Linear Regression with One Variable)我们提到过的线性回归中,我们只有一个单一特征量(变量)——房屋面积x。我们希望使用这个特征量来预测房子的价格。我们的假设在下图中用蓝线划出: 不妨思考一下,如果我们不仅仅知道房屋面积(作为预测房屋价格的特征量(...
【Machine Learning】4 多变量线性回归(Linear Regression with Multiple Variables),程序员大本营,技术文章内容聚合第一站。
4 多变量线性回归(Linear Regression with Multiple Variables) 4.1 多特征(Multiple Features) 对于一个要度量的对象,一般来说会有不同维度的多个特征。比如之前的房屋价格预测例子中,除了房屋的面积大小,可能还有房屋的年限、房屋的层数等等其他特征: 这里由于特征不再只有一个,引入一些新的记号 ...
Linear Regression with Multiple Variables. 1. Multivariate Linear Regression I would like to give full credits to the respective authors as these are my personal python notebooks taken from deep learning courses from Andrew Ng, Data School and Udemy :) This is a simple python notebook hosted ...
一、Linear Regression 主要分为Linear Regression with One Variable & Linear Regression with Multiple Variables Linear Regression with One Variable 简单地说就是一个自变量一个因变量,且二者的关系近似可以用一条直线去拟合。 例如房价与面积的关系,就可以近似看成单变量线性回归问题 ...
3.2 Multiple Linear Regression Simple linear regression is a useful approach for predicting a response on the basis of a single predictor variable 单个变量分析 3.2.1 Estimating the Regression Coefficients 多变量参数估计还是使用 least squares approach,只不过需要使用矩阵来表示更简洁,所以这里我们就可以给出...
[Section 1] Multiple Features [Section 2] Gradient Descent for Multiple Variables [Section 3] Gradient Descent in Practice I - Feature Scaling [Section 4] Gradient Descent in Practice II - Learning Rate [Section 5] Features and Polynomial Regression ...