Markov Chain & Monte Carlo (MCMC)是推断(Inference)中近似推断中的随机推断。 Monte Carlo Method Monte Carlo Method是对一类随机方法的特性的概括,即那些“采样越多,越近似最优解”的方法[1]。 Monte Carlo Method是一种基于采样的随机近似方法。推断的任务是求后验概率(posterior probability)P(Z|X),其中X...
一般而言,均匀分布Uniform(0,1)的样本容易生成,而常见的概率分布(连续或离散)都可以基于均匀分布的样本生成,例如正态分布可以通过Box-Muller变换得到. 但是像p(x,y,z)这样甚至更高维度分布的样本很难生成,而MCMC(Markov Chain Monte Carlo)和Gibbs Sampling算法就是解决这个问题的.让我们从马尔科夫链(Markov Chain...
Gibbs sampling是一种获得某种联合分布的近似采样的马尔科夫链蒙特卡洛方法,这里介绍2种gibbs采样器,系统扫描以及随即扫描法。 系统扫描法 X,Y 是联合分布 p_{X,Y}(x,y)=P(X=x,Y=y) ,我们需要创建一个二维的马尔可夫链 (X_n,Y_n) ,其稳态分布为 p_{X,Y} 。系统扫描法gibbs采样器通过迭代更新 X ...
由于一个普通的Markov Chain每个时刻对应的随机变量Xt和每组相邻时刻间的{Pt,t+1}是不一样的,所以需要引入一个接受率α,使得每组相邻时刻的概率分布和随机矩阵满足Detail Balance条件,α的公式如下: 最终得到MH算法流程如下: MH算法引出小结: MH采样全称是Metropolis Hastings,MH算法的主要思想是引入接受率α=min{1,...
MCMC(Markov Chain Monte Carlo)是一种利用马尔可夫链的采样技术。它通过构建满足详和平衡条件的转移矩阵来模拟目标分布的样本。在MCMC中,Metropolis-Hastings算法是一种改进的MCMC方法,通过调整接受率来提高采样效率。Gibbs Sampling是MCMC的一种特殊形式,适用于条件独立的随机变量。通过交替更新每个变量的...
但是像p(x,y,z)这样甚至更高维度分布的样本很难生成,而MCMC(Markov Chain Monte Carlo)和Gibbs Sampling算法就是解决这个问题的.让我们从马尔科夫链(Markov Chain)说起 二.马尔科夫链 马尔科夫链(Markov Chain),简称马氏链, 定义: 1.png 含义:当前所处状态只和前一个状态有直接联系 ...
Markov Chain & Monte Carlo (MCMC)是推断(Inference)中近似推断中的随机推断。 Monte Carlo Method Monte Carlo Method是对一类随机方法的特性的概括,即那些“采样越多,越近似最优解”的方法[1]。 Monte Carlo Method是一种基于采样的随机近似方法。推断的任务是求后验概率(posterior probability),其中为观测变量(...
这些都会带来计算上的很大困难。这也是在很长的时期内,贝叶斯统计得不到快速发展的一个原因。1990年代MCMC(Markov Chain Monte Carlo ,马尔科夫链蒙特卡洛)计算方法引入到贝叶斯统计学之后,一举解决了这个计算的难题。可以说,近年来贝叶斯统计的蓬勃发展,特别是在各个学科的广泛应用和MCMC方法的使用有着极其密切的关系。
区块链的scalability包括两个部分,一是存储,一是交易速度,针对这两个方面,很多的工作和项目在进行。一种方法是从架构层面来解决,它又有两种方式,一是分片(sharding),一是侧链(sidechain)。另一种探索是从数据结构和共识算法上来解决,它包括完全改变现状的区块结构,比如DAG。还包括不同的共识算法,比如POW,POS,DPOS,...
Markov chain Monte Carlo (MCMC) sampling methods to determine optimal mod- els, model resolution and model choice for Earth Science problems. Mar. Pet. Geol. 26 (4), 525-535.Gallagher, K., Charvin, K., Nielsen, S., Sambridge, M., Stephenson, J., 2009. Markov chain Monte Carlo (...