frommmcvimportConfig# 从配置文件加载模型配置cfg=Config.fromfile('configs/faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py')# 修改参数,例如修改学习率cfg.optimizer.lr=0.001# 将学习率设置为 0.001 1. 2. 3. 4. 5. 6. 7. Config.fromfile用于从配置文件读取配置内容,之后可以修改配置属性(如lr)。 步...
def register_training_hooks(self,lr_config,optimizer_config=None, checkpoint_config=None,log_config=None,momentum_config=None): """ 各个hook的优先级如下 +---+---+ | Hooks | Priority | +===+===+ | LrUpdaterHook | VERY_HIGH (10) | +---+---+ | MomentumUpdaterHook | HIGH (30)...
配置类(Config):在 OpenMMLab 算法库中,用户可以通过编写 config 来配置训练、测试过程以及相关的组件。 注册器(Registry):负责管理算法库中具有相同功能的模块。MMEngine 根据对算法库模块的抽象,定义了一套根注册器,算法库中的注册器可以继承自这套根注册器,实现模块的跨算法库调用。
将待训练模型model,优化器optimizer,日志管理器配置到runner中# runner此时已经包含了训练的大的框架:前向计算,反向传播,日志记录runner=EpochBasedRunner(model,optimizer=optimizer,work_dir='./work_dir',logger=logger,max_epochs=4)# learning rate scheduler config# 配置优化器中的训练学习率衰减策略lr_config=d...
optimizer = dict(type='Adam', lr=0.001, weight_decay=0.01)optimizer_config = dict(grad_clip=None)lr_config = dict(policy='CosineAnnealing', warmup=None, min_lr=1e-5)runner=dict(type='EpochBasedRunner', max_epochs=200) 5. 后记 ...
Just add this line into your configuation file. (By the way, I am not sure what the default learning rate is, but my co-pilot told that it is 0.02) optimizer = dict(lr=0.02 / 10) # reduce learning rate by 10x. Thank you, brother. I lowered it by half at the beginning, and ...
I am using mmdetection by customizing the backbone of centernet with hrnet but when i train it with hrnet its loss is converging but showing evaltuion 0 .I tried to fix the issue but nothing happend. This is my config file: base = [ '../...
又一个大爆炸?MetaAI开源新的自监督预训练模型—DINOv2,无需fine-tuning,刷榜多个下游任务 下一篇 » ConvNeXt V2:适应Self-Supervised Learning,让CNN 再 “再一次强大”? 引用和评论 注册登录 获取验证码 新手机号将自动注册 登录 微信登录免密码登录密码登录 ...
(cfg.data.train)ifcfg.checkpoint_configisnotNone:# save mmdet version, config file content and class names in checkpoints as meta data# 要注意的是,以前发布的模型是不存这个类别等信息的,# 用的默认COCO或者VOC参数,所以如果用以前训练好的模型检测时会提醒warning一下,无伤大雅cfg.checkpoint_config....
optimizer=dict(type='Adam',lr=0.001,weight_decay=0.01)optimizer_config=dict(grad_clip=None)lr_config=dict(policy='CosineAnnealing',warmup=None,min_lr=1e-5)runner=dict(type='EpochBasedRunner',max_epochs=200) 5. 后记 本文简要介绍了点云语义分割这一任务和MMDet3D 的支持算法,欢迎大家使用 MMDet...