Python代码 classSolution(object):defmaxSubArray(self, nums):""" :type nums: List[int] :rtype: int """ifnotnums:return0dp =0sum= -0xFFFFFFFFforiinrange(len(nums)): dp = nums[i] + (dpifdp >0else0)# if dp > 0: dp = nums[i] + dp, else: dp = nums[i]sum=max(sum, dp...
python代码如下: 1classSolution:2#@param A, a list of integers3#@return an integer4defmaxSubArray(self, A):5#kadane's dynamic programming algorithm6maxSum = -1 * (1 << 30)7currSum =maxSum8forainA:9currSum = max(a, a +currSum)10maxSum =max(maxSum, currSum)11returnmaxSum...
sumNum += nums[i] rightMax = max(rightMax, sumNum) leftAns = self.maxSubArrayHelper(nums, l, m - 1) rightAns = self.maxSubArrayHelper(nums, m + 1, r) return max(leftMax + nums[m] + rightMax, max(leftAns, rightAns)) # 返回三个中的最大值 def maxSubArray(self, nums): re...
So just keep track the sum and find if sum[i] - k is exist or not. Then update the max. length. Also, if m[sum] is exist then ignore it, since we always want to get a shorter starting point.
classSolution {public:intmaxSubArrayLen(vector<int>& nums,intk) {if(nums.empty())return0;intres =0; unordered_map<int, vector<int>>m; m[nums[0]].push_back(0); vector<int> sum =nums;for(inti =1; i < nums.size(); ++i) { ...
Can you solve this real interview question? Maximum Sum Circular Subarray - Given a circular integer array nums of length n, return the maximum possible sum of a non-empty subarray of nums. A circular array means the end of the array connects to the beg
Can you solve this real interview question? Maximum Sum of Two Non-Overlapping Subarrays - Given an integer array nums and two integers firstLen and secondLen, return the maximum sum of elements in two non-overlapping subarrays with lengths firstLen and
Leetcode 152 Maximum Product Subarray For example, given the array[2,3,-2,4], the contiguous subarray[2,3]has the largest product =6. 找出最大连续乘积。 与最大连续和类似,但有不同。 最大值可能是由当前最大正值乘正值,也有可能是由当前最小负值乘负值得到,...
Given an integer arraynums, find the contiguous subarray (containing at least one number) which has the largest sum and return its sum. Example: Input: [-2,1,-3,4,-1,2,1,-5,4], Output: 6 Explanation: [4,-1,2,1] has the largest sum = 6. ...
the contiguous subarray[4,-1,2,1]has the largest sum =6. 求最大字段和。 给出一个数列。输出这个数列的最大字段和。比如:[−2,1,−3,4,−1,2,1,−5,4],最大子段和是[4,-1,2,1],输出是6. 题目思路: 通常求最大字段和有四种方法: ...