Find the contiguous subarray within an array (containing at least one number) which has the largest sum. For example, given the array[−2,1,−3,4,−1,2,1,−5,4], the contiguous subarray[4,−1,2,1]has the largest sum =6. 这个一道非常经典的题目,剑指offer上也有。 用DP做思...
Find the contiguous subarray within an array (containing at least one number) which has the largest sum. For example, given the array[−2,1,−3,4,−1,2,1,−5,4], the contiguous subarray[4,−1,2,1]has the largest sum =6. 1publicstaticintmaxSubArray(int[] A)2{3intmax=A...
maximum subarray problem def DP_maximum_subarray(arr): t = len(arr) MS = [0]*t MS[0] = arr[0] for i in range(1, t): MS[i] = max(MS[i-1]+arr[i], arr[i]) return MS def main(): # example of array A A = [13,-3,-25,20,-3,-16,-23,18,20,-7,12,-5,-22,...
Given an array of integers, find a contiguous subarray which has the largest sum. Challenge Can you do it in time complexity O(n)? sumSub[i]表示以第i个数结尾的子数组的最大和,则 sumSub初始化为nums; sumSub[i]= sumSub[i-1]+nums[i]>sumSub[i]?(sumSub[i-1]+nums[i]):sumSub[i...
Maximum Size Subarray Sum Equals K Given an arraynumsand a target valuek, find the maximum length of a subarray that sums tok. If there isn't one, return 0 instead. Example 1: Givennums=[1, -1, 5, -2, 3],k=3, return4. (because the subarray[1, -1, 5, -2]sums to 3 and...
p2p2= maximum subarray sum in[l…r][l…r] p1p1= remaining left side sum p3p3= remaining right side sum p1+p2+p3=∑a[l…r]p1+p2+p3=∑a[l…r] Now to combine two arrays, the maximum subarray sum of the combined array would bemax(p(1)2,p(2)2,p(1)2+p(1)3+p(2)1+p(...
题目Given an integer array nums, find the contiguous subarray (containing at least one number) which has the largest sum and return its sum. A subarray is a contiguous part of an array. Example 1: I…
(5kyu) The maximum sum subarray problem consists in finding the maximum sum of a contiguous subsequence in an array or list of integers: maxSequence([-2 , 1, -3, 4, -1 , 2, 1, -5, 4]) # should be 6: [4, -1, 2, 1] ...
有了FIND-MAX-CROSSING-SUBARRAY我们可以找到跨越中点的最大子数组,于是,我们也可以设计求解最大子数组问题的分治算法了,其伪代码如下: FIND-MAXMIMUM-SUBARRAY(A, low, high): if high = low return (low, high, A[low]) else mid = floor((low+high)/2) (left-low, left-high, left-sum)...
cout << "Maximum subarray sum is " << max_sum << endl; return 0; } Kadane’s Algorithm Kadane’s algorithm is an efficient algorithm used to find the maximum sum subarray within a given array of integers. It was proposed by computer scientist Jay Kadane in 1984. The algorithm works by...