maximum subarray problem def DP_maximum_subarray(arr): t = len(arr) MS = [0]*t MS[0] = arr[0] for i in range(1, t): MS[i] = max(MS[i-1]+arr[i], arr[i]) return MS def main(): # example of array A A = [13,-3,-25,20,-3,-16,-23,18,20,-7,12,-5,-22,...
Explanation: We just choose [3] and it's the maximum sum. Example 3: Input: arr = [-1,-1,-1,-1] Output: -1 Explanation: The final subarray needs to be non-empty. You can't choose [-1] and delete -1 from it, then get an empty subarray to make the sum equals to 0. Cons...
Explanation: The subarray [4,-1,2,1] has the largest sum 6. Example 2: Input: nums = [1] Output: 1 Explanation: The subarray [1] has the largest sum 1. Example 3: Input: nums = [5,4,-1,7,8] Output: 23 Explanation: The subarray [5,4,-1,7,8] has the largest sum 23....
https://leetcode.com/problems/maximum-subarray/ 题目描述 Given an integer array nums, find the contiguous subarray (containing at least one number) which has the largest sum and returnits sum. Example 1: Input: nums=[-2,1,-3,4,-1,2,1,-5,4] Output:6 ...
题目Given an integer array nums, find the contiguous subarray (containing at least one number) which has the largest sum and return its sum. A subarray is a contiguous part of an array. Example 1: I…
leetcode || 53、Maximum Subarray problem: Find the contiguous subarray within an array (containing at least one number) which has the largest sum. For example, given the array [−2,1,−3,4,−1,2,1,−5,4], the contiguous subarray [4,−1,2,1] has the largest sum = 6....
AI代码解释 intmaxSubArray(int*nums,int numsSize){int max=INT_MIN;//选择一个起始点for(int i=0;i<numsSize;i++){int sum=0;//选择一个结束点for(int j=i;j<numsSize;j++){sum=sum+nums[j];if(sum>max){max=sum;}}}returnmax;}...
给定序列(至少包含一个数),寻找连续子序列,其拥有最大和。 Example, 给定 [-2,1,-3,4,-1,2,1,-5,4], 最大子序列[4,-1,2,1] 最大和 6. 这是一个dynamic programming 解决的优化问题。求A[:]的子序列最大和可以转为求A[:i]的子序列最大和,i为子序列的最大值,不断更行子问题的解来求得...
Explanation: We just choose [3] and it's the maximum sum. Example 3: Input: arr = [-1,-1,-1,-1] Output: -1 Explanation: The final subarray needs to be non-empty. You can't choose [-1] and delete -1 from it, then get an empty subarray to make the sum equals to 0. ...
Example Live Demo #include <bits/stdc++.h> using namespace std; class Solution { public: int maxSubarraySumCircular(vector<int>& v) { int n = v.size(); vector <int> leftSum(n),leftSumMax(n),rightSum(n), rightSumMax(n); leftSum[0] = v[0]; leftSumMax[0] = max((int)0,...