fig,ax=plt.subplots()x=np.linspace(0,10,100)y=np.exp(x)ax.plot(x,y,label='exp(x)')ax.set_xlim(0,5)ax.set_ylim(0,100)ax.set_title('Setting limits with Axes object - how2matplotlib.com')ax.legend()plt.show() Pytho
importmatplotlib.pyplotaspltimportnumpyasnpfrommatplotlib.tickerimportFuncFormatterx=np.linspace(0,10,100)y=np.sin(x)plt.plot(x,y)defformat_func(value,tick_number):returnf'{value:.2f}'plt.gca().xaxis.set_major_formatter(FuncFormatter(format_func))plt.show() Python Copy Output:...
# Create the figure and the axesfig, ax = plt.subplots()# Plot the data and get the averagedtop_10.plot(kind='barh', y="Sales", x="Name", ax=ax)avg = top_10['Sales'].mean()# Set limits and labelsax.set_xlim([-10000,140000])ax.set(title='2014 Revenue', xlabel='Total R...
#set x limits plt.xlim((-1, 2)) plt.ylim((-2, 3)) # set new sticks new_sticks = np.linspace(-1, 2, 5) plt.xticks(new_sticks) # set tick labels plt.yticks([-2, -1.8, -1, 1.22, 3], [r'$really\ bad$', r'$bad$', r'$normal$', r'$good$', r'$really\ good$...
(-4,4,9,endpoint=True))#set ylimitsplt.ylim(-1.2,1.2)# Set y ticksplt.yticks(np.linspace(-1.2,1.2,5,endpoint=True))X=np.linspace(-np.pi,np.pi,256,endpoint=True)C,S=np.cos(X),np.sin(X)marker_on=[5,20,27,80]# Plot cosine with a blue continuous line of ...
def argand(a): import matplotlib.pyplot as plt import numpy as np for x in range(len(a)): plt.plot([0,a[x].real],[0,a[x].imag],'ro-',label='python') limit=np.max(np.ceil(np.absolute(a))) # set limits for axis plt.xlim((-limit,limit)) plt.ylim((-limit,limit)) plt...
以前,Matplotlib的一大槽点就是饼图都是蛋形的。如果你还想调回原来的默认蛋型饼图,可以用ax.set_aspect("auto")或者plt.axis("auto")把纵横轴的比设为自动。新增SubplotBase.get_gridspec 通过这种新方法,用户可以轻松获取gridspec。轴标题不会再与x轴重叠了 以前,如果轴标题与x轴重叠,需要手动调整。现在...
These objects set the scale and limits and generate ticks (the marks on the Axis) and ticklabels (strings labeling the ticks). The location of the ticks is determined by a Locator object and the ticklabel strings are formatted by a Formatter. The combination of the correct Locator and Forma...
# Set limits and labels ax.set_xlim([-10000,140000]) ax.set(title='2014 Revenue', xlabel='Total Revenue', ylabel='Customer') # Add a line for the average ax.axvline(x=avg, color='b', label='Average', linestyle='--', linewidth=1) ...
# set x limits 设置x y的范围 plt.xlim((-1, 2)) plt.ylim((-2, 3)) plt.xlabel('I am x')# x y 的label plt.ylabel('I am y') # set new sticks #设置新的刻度 new_ticks = np.linspace(-1, 2, 5) print(new_ticks)