Matplotlib 散点图 我们可以使用 pyplot 中的 scatter() 方法来绘制散点图。 scatter() 方法语法格式如下: matplotlib.pyplot.scatter(x, y, s=None, c=None, marker=None, cmap=None, norm=None, vmin=None, vmax=None, alpha=None, linewidths=None, *, edgecolors=..
matplotlib.pyplot.scatter(x, y, s=None, c=None, marker=None, cmap=None, norm=None, vmin=None, vmax=None, alpha=None, linewidths=None, verts=None, edgecolors=None, *, data=None, **kwargs) x,y:表示的是大小为(n,)的数组,也就是我们即将绘制散点图的数据点 s:是一个实数或者是一个数...
c 是直接指定点的颜色,可以是所有点一个颜色、每个点不同颜色(此时就是数组),也可以通过一个二维数组用 RGB/RGBA 来指定点的颜色。 cmap 则是利用 matplotlib 内置的 colormap 来指定点的颜色,不用再手动去指定每个点的颜色,matplotlib 会自动确定。例如 cmap="viridis"。 参见:matplotlib.pyplot.scatter — Ma...
https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.scatter.html#matplotlib-pyplot-scatter (2)中文翻译版 matplotlib.pyplot.scatter(x,y,s=None,c=None,marker=None,cmap=None,norm=None,vmin=None,vmax=None,alpha=None,linewidths=None,*,edgecolors=None,plotnonfinite=False,data=None,**kwarg...
1、scatter函数原型 2、其中散点的形状参数marker如下: 3、其中颜色参数c如下: 4、基本的使用方法如下: #导入必要的模块 import numpy as np import matplotlib.pyplot as plt #产生测试数据 x = np.arange(1,10) y = x fig = plt.figure()
然后,我们使用plt.scatter函数绘制散点图,其中x和y参数分别表示散点的横坐标和纵坐标。最后,我们使用plt.show函数显示图表。二、调整散点图外观默认情况下,散点图的颜色为黑色,我们可以使用c参数调整颜色。以下是一个例子,演示如何使用c参数指定颜色: import matplotlib.pyplot as plt # 创建数据 x = [1, 2, ...
matplotlib中plt.scatter()参数详解 scatter(x, y, s=None, c=None, marker=None, cmap=None, norm=None, vmin=None, vmax=None, alpha=None, linewidths=None, verts=None, edgecolors=None, hold=None, data=None, **kwargs) x,y:输入数据,array_like,shape(n,)...
我们可以使用 pyplot 中的scatter()方法来绘制散点图。 scatter() 方法语法格式如下: matplotlib.pyplot.scatter(x, y, s=None, c=None, marker=None, cmap=None, norm=None, vmin=None, vmax=None, alpha=None, linewidths=None, *, edgecolors=None, plotnonfinite=False, data=None, **kwargs) ...
x和y参数指定x轴和y轴坐标,s参数指定mark size, 即点的大小,c参数指定color,即颜色。scatter会根据数值自动进行映射,如果不指定大小和颜色,scatter和普通的plot方法绘制的效果一样,以下两种写法的可视化的效果是等价的 代码语言:javascript 代码运行次数:0 ...
在matplotlib中,scatter方法用于绘制散点图,与plot方法不同之处在于,scatter主要用于绘制点的颜色和大小呈现梯度变化的散点图,也就是我们常说的气泡图。基本用法如下 plt.scatter(x= np.random.randn(10), y=np.random.randn(10),s=40 * np.arange(10),c=np.random.randn(10)) ...