聚类算法,不是分类算法。分类算法是给一个数据,然后判断这个数据属于已分好的类中的具体哪一类。聚类算法是给一大堆原始数据,然后通过算法将其中具有相似特征的数据聚为一类。 K-Means算法的基本思想是初始随机给定K个簇中心,按照最邻近原则把待分类样本点分到各个簇。然后按平均法重新计算各个簇的质心,从而确定新的...
调用kmeans函数: 使用MATLAB内置的kmeans函数进行聚类。需要传入数据集和预期的聚类数目(例如,这里我们选择3个聚类): matlab numClusters = 3; [idx, C] = kmeans(data, numClusters); 其中,idx是每个数据点的聚类标签,C是聚类中心。 分析kmeans函数的输出: 获取聚类中心和每个数据点的聚类标签后,可以进行进...
① 没有对象被重新分配给不同的聚类; ②聚类中心不再发生变化; ③误差平方和局部最小。 K-means算法的步骤: ①. 从n个数据中选取k个对象作为初始聚类中心;(这一步也造成了此算法每次运行的结果并不完全一致!) ②计算每个聚类中心对象的均值,根据最小距离重新划分相应对象; ③重新计算每个聚类的均值,直到聚类中...
聚类算法是给一大堆原始数据,然后通过算法将其中具有相似特征的数据聚为一类。 这里的k-means聚类,是事先给出原始数据所含的类数,然后将含有相似特征的数据聚为一个类中。 所有资料中还是Andrew Ng介绍的明白。 首先给出原始数据{x1,x2,...,xn},这些数据没有被标记的。 初始化k个随机数据u1,u2,...,uk。...
不过这个只能实现2种聚类 python代码: 代码语言:javascript 复制 #-*-coding:utf-8-*-importnumpyasnp from matplotlibimportpyplotclassK_Means(object):# k是分组数;tolerance‘中心点误差’;max_iter是迭代次数 def__init__(self,k=2,tolerance=0.0001,max_iter=300):self.k_=k ...
('Class-%d',1:K);% 将相同组数据放在一起,并计算相关矩阵[Class,Ind]=sort(kmeans(Data,K));HMat=corr(Data(Ind,:).');%% 绘图部分% 坐标区域修饰figure('Units','normalized','Position',[.1,.1,.6,.8])ax=gca;ax.NextPlot='add';ax.Box='on';ax.PlotBoxAspectRatio=[1,1,1];ax....
[k, centroids] = kmeans(X, k) 其中,X是n个d维样本的矩阵,k是聚类的数量。该函数将返回聚类的标签k和聚类中心centroids。 另一种用法是: [idx, centroids] = kmeans(X, k) 这种用法会返回每个样本的类别索引idx,以及聚类中心centroids。 可以通过设置额外的参数来进一步控制kmeans函数的行为,例如: - '...
K-means是一种典型的聚类算法,它是基于距离的,是一种无监督的机器学习算法。 K-means需要提前设置聚类数量,我们称之为簇,还要为之设置初始质心。 缺点: 1、循环计算点到质心的距离,复杂度较高。 2、对噪声不敏感,即使是噪声也会被聚类。 3、质心数量及初始位置的选定对结果有一定的影响。
常用的聚类算法有:K-MEANS、K-MEDOIDS、BIRCH、CURE、DBSCAN、STING。 主要聚类算法分类 类别包括的主要算法划分的方法K-MEANS算法(K平均)、K-MEDOIDS算法(K中心点)、CLARANS算法(基于选择的算法)层次的方法BIRCH算法(平衡迭代规约和聚类)、CURE算法(代表点聚类)、CHAMELEON算法(动态模型)基于密度的方法DBSCAN算法(基于...