matlab聚类算法代码 下面是使用MATLAB的k-means聚类算法的示例代码: %加载数据 data=load('txt'); %初始化变量 k=3;%聚类的数量(k) max_iters=10;%最大迭代次数 m=size(data,1);%数据点数目 n=size(data,2);%特征数目 centroids=zeros(k,n);%质心 %初始化质心 rand_indices=randperm(m); centroid...
kmeans算法的matlab代码K-means算法是一种常用的聚类算法,在数据挖掘和机器学习领域有着广泛的应用。它的主要思想是将数据分成K个簇,使得同一簇内的数据相似度较高,不同簇之间的数据相似度较低。 在本文中,我们将介绍K-means算法的原理,并给出其在Matlab中的实现代码。下面是K-means算法在Matlab中的代码实现: 1...
K-means聚类算法matlab程序代码 clear clc x=[0 0;1 0;0 1;1 1;2 1;1 2;3 2;6 6;7 6;8 6;6 7;7 7;8 7;9 7;7 8;8 8;9 8;8 9;9 9]; z=zeros(2,2); z1=zeros(2,2); z=x(1:2,1:2); % % 寻找聚类中心 while 1 count=zeros(2,1); allsum=zeros(2,2); for ...
Kmeans聚类MATLAB代码 clearall closeall I_rgb=imread('12.jpg'); figure,imshow(I_rgb);title('原始图像'); C=makecform('srgb2lab'); I_lab=applycform(I_rgb,C); ab=double(I_lab(:,:,2:3)); nrows=size(ab,1); ncols=size(ab,2); ab=reshape(ab,nrows*ncols,2); nColors=3;%...
function kmeans load q1x.dat; a1=round(98*rand+1); a2=round(98*rand+1); miao1=[q1x(a1,1),q1x(a1,2)]; miao2=[q1x(a2,1),q1x(a2,2)]; c=zeros(99,1); sum1=zeros(1,2); sum2=zeros(1,2); for k=1:1 for i=1:99 ...
我们可以使用如下代码生成100个服从正态分布的数据点: ```matlab X = [randn(50,2)+1; randn(50,2)-1]; ``` 然后,我们可以调用kmeans函数进行聚类分析。假设我们希望将数据分成两个簇,可以使用如下代码: ```matlab k = 2; [idx, C] = kmeans(X, k); ``` 接下来,我们可以根据聚类结果将数据...
一、参考来源及原理 2.1 参考来源 2.2 原理 二、MATLAB代码 三、仿真结果 注:本次记录了关于K-Means聚类算法的笔记。以下笔记来源于本人,参考来源已经在笔记中注明,除注明部分外其他过程均来源于本人,若有侵权,欢迎联系删除。笔记供大家参考学习使用,请勿将笔记用于商用,谢谢。笔记难免存在笔误或错误,若有发现,欢迎...
K-means聚类算法采用的是将N*P的矩阵X划分为K个类,使得类内对象之间的距离最大,而类之间的距离最小。 使用方法: Idx=Kmeans(X,K) [Idx,C]=Kmeans(X,K) [Idx,C,sumD]=Kmeans(X,K) [Idx,C,sumD,D]=Kmeans(X,K) […]=Kmeans(…,’Param1’,Val1,’Param2’,Val2,…) ...
不过在此之前先讲解如何绘制聚类效果、聚类边界,最后再展示上图所示更强的聚类边界。代码其实不需要写下面那么长,但是为了画图好看就写长点叭: kmeans聚类结果 kmeans原理太简单就不细致的讲解了,而且matlab自带了kmeans函数,直接用就完事了,以下随机生成一组数据并聚类并绘图: ...
1.程序功能描述 K-means属于聚类分析中一种基本的划分方法,常采用误差平方和准则函数作为聚类准则。主要优点是算法简单、快速而且能有效地处理大数据集。研究和分析了聚类算法...