Kmeans算法对初始值是⽐较敏感的,对于同样的k值,选取的点不同,会影响算法的聚类效果和迭代的次数。本文通过计算原始数据中的:CH值、DB值、Gap值、轮廓系数,四种指标来衡量K-means的最佳聚类数目,并使用K-means进行聚类,最后可视化聚类的结果。 1.K-means算法 k均值聚类算法(k-means clustering algorithm)是一种...
常用的聚类算法有:K-MEANS、K-MEDOIDS、BIRCH、CURE、DBSCAN、STING。 主要聚类算法分类 聚类算法的性能比较 由表可得到以下结论:1)大部分常用聚类算法只适合处理数值型数据;2)若考虑算法效率、初始聚类中心影响性和对异常数据敏感性,其中BIRCH算法、CURE算法以及STING算法能得到较好的结果;3)CURE算法、DBSCAN算法以及ST...
Kmeans算法中,K值所决定的是在该聚类算法中,所要分配聚类的簇的多少。Kmeans算法对初始值是⽐较敏感的,对于同样的k值,选取的点不同,会影响算法的聚类效果和迭代的次数。本文通过计算原始数据中的:CH值、DB值、Gap值、轮廓系数,四种指标来衡量K-means的最佳聚类数目,并使用K-means进行聚类,最后可视化聚类的结果。
K-means聚类算法是一种迭代求解的聚类分析算法,其基本原理是: 初始随机选定K个对象作为初始聚类中心。 计算每个对象与各个聚类中心之间的距离,将每个对象分配到距离它最近的聚类中心。 聚类中心以及分配给它们的对象就代表一个聚类。每分配一个样本,聚类中心会根据聚类中现有的对象被重新计算。 重复上述步骤,直到满足某...
执行k均值聚类时,一般步骤: 比较ķ -means集群解决方案的不同值ķ确定集群,为数据的最佳数量。 通过检查轮廓图和轮廓值来评估聚类解决方案。还可以使用该evalclusters函数,根据间隙值、轮廓值、Davies-Bouldin 指数值和 Calinski-Harabasz 指数值等标准评估聚类解决方案。
以K-means算法为例,实现了如下功能 自动生成符合高斯分布的数据,函数名为gaussianSample.m 实现多次随机初始化聚类中心,以找到指定聚类数目的最优聚类。函数名myKmeans.m 自动寻找最佳聚类数目,函数名称besKmeans.m,并绘制了拐点图(L图) gaussianSample.m ...
常用的聚类算法有:K-MEANS、K-MEDOIDS、BIRCH、CURE、DBSCAN、STING。 主要聚类算法分类 聚类算法的性能比较 由表可得到以下结论:1)大部分常用聚类算法只适合处理数值型数据;2)若考虑算法效率、初始聚类中心影响性和对异常数据敏感性,其中BIRCH算法、CURE算法以及STING算法能得到较好的结果;3)CURE算法、DBSCAN算法以及ST...
常用的聚类算法有:K-MEANS、K-MEDOIDS、BIRCH、CURE、DBSCAN、STING。 主要聚类算法分类 类别包括的主要算法划分的方法K-MEANS算法(K平均)、K-MEDOIDS算法(K中心点)、CLARANS算法(基于选择的算法)层次的方法BIRCH算法(平衡迭代规约和聚类)、CURE算法(代表点聚类)、CHAMELEON算法(动态模型)基于密度的方法DBSCAN算法(基于...
Matlab实现:在Matlab中,可以使用内置的kmeans函数来执行Kmeans聚类。例如,idx = kmeans,其中data是数据集,K是聚类数目,idx是数据点所属的簇标签。最佳聚类数目的确定: 评估指标: 1. 卡林斯基哈拉巴斯指标:基于簇间方差与簇内方差的比例来衡量聚类效果,CH值越大,聚类效果越好。 2. 戴维斯...
聚类算法,不是分类算法。分类算法是给一个数据,然后判断这个数据属于已分好的类中的具体哪一类。聚类算法是给一大堆原始数据,然后通过算法将其中具有相似特征的数据聚为一类。 K-Means算法的基本思想是初始随机给定K个簇中心,按照最邻近原则把待分类样本点分到各个簇。然后按平均法重新计算各个簇的质心,从而确定新的...