重点分析了K-均值聚类算法对初始值的依赖性,并用实验验证了随机选取初始值对聚类结果的影响性。根据传统的K-means算法存在的缺陷,提出了改进后的K-means算法,主要解决了孤点对聚类中心影响的问题以及K值的确认问题。 2.测试软件版本以及运行结果展示 MATLAB2022a版本运行 3.核心程序 for Cluster_Num = 2 : K_sta...
聚类算法,不是分类算法。 分类算法是给一个数据,然后判断这个数据属于已分好的类中的具体哪一类。 聚类算法是给一大堆原始数据,然后通过算法将其中具有相似特征的数据聚为一类。 这里的k-means聚类,是事先给出原始数据所含的类数,然后将含有相似特征的数据聚为一个类中。 所有资料中还是Andrew Ng介绍的明白。 首...
opts= statset('Display','final');%调用Kmeans函数%X N*P的数据矩阵%Idx N*1的向量,存储的是每个点的聚类标号%Ctrs K*P的矩阵,存储的是K个聚类质心位置%SumD1*K的和向量,存储的是类间所有点与该类质心点距离之和%D N*K的矩阵,存储的是每个点与所有质心的距离; [Idx,Ctrs,SumD,D]= kmeans(X,3,'...
K-Means聚类算法是一种直观、简单、可扩展性强的聚类算法,普遍存在于数据挖掘、计算机视觉等领域。 MATLAB是目前最为广泛应用的科学计算语言,它可以将高深的科学计算做成容易理解的程序代码,直接用于各种科学计算任务包括数值计算、科学可视化、直观交互、数据处理以及模拟建模。其中,K-Means聚类算法也被完美的支持,该算法...
MATLAB的机器学习工具箱和深度学习工具箱都非常强大,然而官方对于无监督学习中的聚类迟迟没有一个很完善的工具箱,于是我开发了该工具箱,该工具箱不仅能得到聚类结果,还支持自动生成代码帮助大家复现结果。 借助该工具箱,能够很方便地使用k-means聚类,工具箱支持一键生成肘部图帮助确定最佳聚类簇数,也能使用使用轮廓系数...
k-means算法也称k均值算法,是一种常用的聚类算法。聚类算法是研究最多、应用最广的一种无监督学习算法。 聚类试图将数据集中的样本划分为若干个通常是不相交的子集,每个子集称为一个“簇”。通过这样的划分,每个簇里的样本可能具有一些潜在的、共同的特质。
Matlab实现K-Means聚类算法 人生如戏!!! 一、理论准备 聚类算法,不是分类算法。分类算法是给一个数据,然后判断这个数据属于已分好的类中的具体哪一类。聚类算法是给一大堆原始数据,然后通过算法将其中具有相似特征的数据聚为一类。 K-Means算法的基本思想是初始随机给定K个簇中心,按照最邻近原则把待分类样本点分到...
在Matlab中,可以使用kmeans函数计算不同K下的聚类效果,并结合绘图函数plot来实现肘部法则的判断。 2. 轮廓系数(Silhouette coefficient) 轮廓系数是一种定量的方法,它通过衡量每个数据点与所属簇的相似度,来评估聚类的效果。轮廓系数的取值范围在[-1, 1]之间,值越大表示聚类效果越好。在Matlab中,可以使用silhouette...
Matlab实现K-Means聚类算法 招募大量matlab技术人员,有大量matlab需求订单,均为个人短期可以完成,有时间的朋友可以加我微信 : Ahxyz6666 人生如戏!!! 一、理论准备 聚类算法,不是分类算法。分类算法是给一个数据,然后判断这个数据属于已分好的类中的具体哪一类。聚类算法是给一大堆原始数据,然后通过算法将其中具有相...