K-means聚类算法全局搜索能力较低并且选择初始质心的具有盲目性,果蝇算法具有优越的全局搜素能力但寻优方向不稳定,因此对果蝇算法(FOA)进行改进并以此优化K-means.在模型基础上利用密度标准差选择初始果蝇个体,并且构建寻优目标精度高的适应度函数进性寻优 2.仿真效果预览 matlab2022a仿真结果如下: 3.MATLAB核心程序 fo...
idx=kmeans(X,k,Name,Value) 进一步按一个或多个 Name,Value 对组参数所指定的附加选项 返回簇索引。 例如,指定余弦距离、使用新初始值重复聚类的次数或使用并行计算的次数。 [idx,C]=kmeans(___) 在 k×p 矩阵 C 中返回 k 个簇质心的位置。 [idx,C,sumd]=kmeans(___) 在 k×1 向量 sumd 中...
聚类算法适合数据类型算法效率发现的聚类形状能否处理大数据集是否受初始聚类中心影响对异常数据敏感性对输入数据顺序敏感性K-MEANS数值型较高凸形或球形能是非常敏感不敏感K-MEDOIDS数值型一般凸形或球形否否不敏感不敏感BIRCH数值型高凸形或球形能否不敏感不太敏感CURE数值型较高任意形状能否不敏感不太敏感DBSCAN数值型...
像许多聚类方法一样,k-means 聚类要求您在聚类之前指定聚类数k。 与层次聚类不同,k均值聚类对实际观察进行操作,而不是对数据中每对观察之间的差异进行操作。此外,k- means 聚类创建单个级别的集群,而不是多级的集群层次结构。因此,对于大量数据, k- means 聚类通常比层次聚类更合适。 k- means 分区中的每个集群...
使用MATLAB进行k-means聚类分析的一般步骤如下:1. 准备数据:将数据集导入MATLAB环境中,可以通过读取文件或手动输入数据来实现。假设数据存储在一个名为"data"的矩阵中。2...
function kmeans load q1x.dat; a1=round(98*rand+1); a2=round(98*rand+1); miao1=[q1x(a1,1),q1x(a1,2)]; miao2=[q1x(a2,1),q1x(a2,2)]; c=zeros(99,1); sum1=zeros(1,2); sum2=zeros(1,2); for k=1:1 for i=1:99 ...
基于DTW距离测度的Kmeans时间序列聚类算法 基于动态时间规整(DTW)的kmeans序列聚类算法,将DTW算法求得的距离取代欧式距离衡量不同长度的阵列或时间序列之间的相似性或距离,实现时间序列的聚类。算法为Matlab编写,注释清晰,逻辑详细,可以方便地替换数据。 初始聚类误差为2.361143e+03. ...
本文首先阐明了聚类算法的基本概念,介绍了几种比较典型的聚类算法,然后重点阐述了K-均值算法的基本思想,对K-均值算法的优缺点做了分析,回顾了对K-均值改...
K-means方法聚类分析matlab代码实现_k mean 聚类分析代码,k means 聚类 matlab-深度学习文档类资源pU**sy 上传1.58 KB 文件格式 m matlab K-mean 代码主要通过matlab进行聚类分析,实现数据的聚类。点赞(0) 踩踩(0) 反馈 所需:3 积分 电信网络下载
k-means聚类分析MATLAB仿真代码枯萎**凋零 上传2.71 KB 文件格式 m matlab kmeans 软件/插件 k-means聚类分析MATLAB仿真代码 点赞(0) 踩踩(0) 反馈 所需:1 积分 电信网络下载 一个Unity入门教程,旨在帮助你快速上手Unity游戏开发 2025-02-20 01:43:41 积分:1 ...