在本小节中,我们给出了时滞系统稳定性的概念,其与非时滞系统稳定性概念基本类似,但区别在于前者要求 ||x_{t_0}||_C<\delta(\varepsilon) ,而后者则是 |x(t_0)|<\delta(\varepsilon) ;然后我们分别给出了 Lyapunov-Krasovskii 定理和 Lyapunov-Razumikhin 定理,并阐述了其核心思想。 如何将 Krasovskii 方法...
该定理可以应用于处理时滞系统的Lyapunov-Krasovskii函数泛函的二重积分项。后续我们将通过一个实例来进行演示。 4 Lyapunov-Krasovskii泛函放缩运算实例 我们以式(3)为例,推导出Lyapunov-Krasovskii泛函二重积分项导数的放缩结果,这里为了更接近实际的控制系统,我们定义a=t-h,b=t,t-h\leq d_t \leq t,我们得到\beg...
该方法的基本思想是通过构造Lyapunov-Krasovskii泛函来分析系统的稳定性。该泛函是系统状态和控制输入的函数,并且具有一定的正定性和次级正定性条件。使用Lyapunov-Krasovskii泛函,可以得到一些关于系统稳定性的定理。这些定理 可以用于评估系统的稳定性,并采取控制策略来保证系统的稳定性。在控制器设计方面,Lyapunov-...
5) Lyapunov-Krasovskii functional Lyapunov-Krasovskii 泛函 6) Lyapunov-Krasovskii theorem Lyapunov-Krasovskii定理 参考词条 补充资料:函人 1.造铠甲的工匠。 说明:补充资料仅用于学习参考,请勿用于其它任何用途。
对于具有非时变系数矩阵的时滞系统,为导出与时滞相关的稳定性判据,在Lyapunov2Krasovskii泛函的构造中通常包含了时间的“平移”变换[2]或状态导数[3];由于切换系统的时变性与非连续性,前者变换效应的积累将导致稳定性分析失去因果性,而后者将收稿日期:2006205222资助项目:国家自然科学基金(60574006)作者简介:丛(1976-)...
4.4.1 Krasovskii方法 非线性系统的状态方程为 假设xe =0。 Krasovskii 18、用状态向量x的导数来构造Lyapunov函数。即令 其中P为对称正定矩阵,4.4 非线性系统的Lyapunov稳定性分析,现代控制理论基础,24,4.4 非线性系统的Lyapunov稳定性分析,为验证 是否为负定, V(x)对时间t求导数,有 考虑到 式中 称为系统的...
针对带有线性的时滞系统稳定性与低保守性是该领域研究的主要问题.由此提出基于Lyapunov-krasovskii泛函的线性时滞系统低保守性研究方法.对Lyapunov-krasovskii泛函进行构造,将自由权矩阵的牛顿-莱布尼兹的公式引入到Lyapunov-krasovskii泛函分析中,对泛函导数的交叉项进行界定,基于Lyapunov的稳定性的定理,得出线性矩阵时滞相关的稳...
运用Lyapunov-Krasovskii定理,以线性矩阵不等式组(LMIs)的形式给出如上闭环系统指数稳定的充分条件;进而将上述方法推广至非线性项满足Lipschitz条件的状态多时滞非线性系统,及线性时变不确定时滞系统的动态输出反馈控制问题中,并以LMIs的形式给出其指数收敛的充分。
14 万方数据大连理工大学博士学位论文2 大连理工大学博士学位论文 2.2不变集定理本节中,我们简要介绍Barbashin—Krasovskii—LaSalle不变定理【22】,该定理的主要贡 献之一在于适当放宽Lyapunov稳定性定理中对Lyapunov函数y(z)的要求。具体来说, 在保证控制系统渐近稳定的同时,可以放宽对Lyapunov函数一阶导数必须非正定...
首先,将带有时变采样周期的线性采样系统转化为线性输入时滞系统;其次,构造一类时变Lyapunov-Krasovskii泛函,给出了线性输入时滞系统稳定的充分条件,且这些条件以线性矩阵不等式的形式给出.其中,所构造的Lyapunov-Krasovskii泛函在采样时刻具有不连续的特性,且在采样点处及整个运行周期内都是严格递减的.然后,提出了定常...