该模型主要分为两部分:encoder和decoder,encoder由双向LSTM构成,decoder由单向LSTM构成。在进行翻译任务时,encoder在源语言句子上对信息进行提取,然后将信息传递给decoder进行句子生成(所翻译出来的目标语言句子)。为了加强decoder对源语言句子信息的分析能力,其在生成单词的每一时间步都会与encoder中所有时间步的隐藏状态向量...
最后一种是N to M的情况,也被称Encoder-Decoder模型/Seq2Seq模型, 它先将输入数据编码成上下文向量,然后通过它来输出预测的序列。这种RNN在机器翻译、文本摘要、阅读理解、对话生成等很多领域都有着极为广泛的应用。 RNN的优缺点 优点: 能够处理变长序列:RNN的核心优势在于其能够处理不同长度的序列数据,无论是文...
LSTM网络可以用于语言翻译,但是不使用encoder-decoder架构的LSTM网络可能会表现不佳。在语言翻译任务中,en...
Encoder-Decoder的基本结构如图所示:上图是一个已经在时间维度上展开(unroll)的Encoder-Decoder模型,其输入序列是”ABC”,输出序列是”WXYZ”,其中”<EOS>”是句子结束符。该模型由两个RNN组成:第1个RNN接受输入序列”ABC”并在读取到<EOS>时终止接受输入,并输出一个向量作为”ABC”这个输入项链的语义表示向量...
最后一种是N to M的情况,也被称Encoder-Decoder模型/Seq2Seq模型, 它先将输入数据编码成上下文向量...
Encoder-Decoder的基本结构如图所示: 上图是一个已经在时间维度上展开(unroll)的Encoder-Decoder模型,其输入序列是”ABC”,输出序列是”WXYZ”,其中”<EOS>”是句子结束符。该模型由两个RNN组成:第1个RNN接受输入序列”ABC”并在读取到<EOS>时终止接受输入,并输出一个向量作为”ABC”这个输入项链的语义表示向量,...
而对于encoder-decoder模型,设有输入序列x1,...,xT,输出序列y1,...,yT‘,输入序列和输出序列的长度可能不同。那么其实就是要根据输入序列去得到输出序列的可能,于是有下面的条件概率,x1,...,xT发生的情况下y1,...,yT‘发生的概率等于p(yt|v,y1,...,yt−1)连乘。其中v表示x1,...,xT对应的隐含状态...
Transformer 模型主要分为两大部分,分别是 Encoder 和 Decoder。Encoder 负责把输入(语言序列)隐射成隐藏层,然后解码器再把隐藏层映射为自然语言序列。 本文主要介绍Encoder结构,Decoder内容大致相同 1 Positional Encoding 对于输入X,维度为[batch_size,sequence_length],sequence_length为句子长度。然后首先经过Embedding为...
1. 原来的Encoder–Decoder 在这个模型中,encoder只将最后一个输出递给了decoder,这样一来,decoder就相当于对输入只知道梗概意思,而无法得到更多输入的细节,比如输入的位置信息。所以想想就知道了,如果输入的句子比较短、意思比较简单,翻译起来还行,长了复杂了就做不好了嘛。
Paper:Learning Phrase Representations using RNN Encoder–Decoder for Statistical Machine Translation GRU(门控循环单元)作为一种常用的循环神经网络模型,其结构特点与LSTM模型颇为相似,专门设计用于捕捉时间序列数据中的深层次信息。相较于LSTM模型,GRU在保持处理时序依赖性和动态变化的能力的同时,拥有更精简的参数数量...