第三种是N to N的情况,输入输出是等长的,这种RNN可以用来生成文章、诗歌甚至代码。 最后一种是N to M的情况,也被称Encoder-Decoder模型/Seq2Seq模型, 它先将输入数据编码成上下文向量,然后通过它来输出预测的序列。这种RNN在机器翻译、文本摘要、阅读理解、对话生成等很多领域都有着极为广泛的应用。 RNN的优缺点...
# define model【Encoder-Decoder Model】 model = Sequential() model.add(LSTM(100, activation='relu', input_shape=(n_steps_in, n_features))) model.add(RepeatVector(n_steps_out)) model.add(LSTM(100, activation='relu', return_sequences=True)) model.add(TimeDistributed(Dense(1))) model.com...
输出为Dense(n_steps_out),代表输出的 y 每次考虑几个时间步. 当然这个问题还可以用 Encoder-Decoder 结构实现: # define model【Encoder-Decoder Model】model=Sequential()model.add(LSTM(100,activation='relu',input_shape=(n_steps_in,n_features)))model.add(RepeatVector(n_steps_out))model.add(LSTM(1...
Encoder-Decoder模型对于目标句子Y中每个单词的生成过程如下:其中f是decoder的非线性变换函数,由此可知,不论生成哪个单词,使用的语义向量都是c,而语义向量c是由句子X的每个单词经过Encoder编码而成的,也就意味着句子X中的单词对生成任意目标单词的影响力是相同的。Attention Model会对输入序列X的不同单词分配不同...
model.add(TimeDistributed(Dense(...))) 表 9.4 Encoder-Decoder 模型的例子 总的来说,使用 RepeatVector 作为编码器的固定大小的 2D 输出, 以适应解码器期望的不同长度和 3D 输入。TimeDistributed wrapper 允许相同的输出层用于输出序列中的每个元素。 9.3 加法预测问题 加法问题是一个序列到序列,或者 seq2seq ...
Therefore, we use RLSTM as the Encoder and LSTM as the Decoder to build an Encoder-Decoder model (EDSModel) for pollutant prediction in this paper. Our experimental results show, for 1 to 24 h prediction, the proposed prediction model performed well with a root mean square error of 30.218...
1.主要工作是将机械设备的传感器数据,LSTM-encoder-decoder模型输入正常数据时间序列训练模型,重构时间序列,然后使用异常数据进行测试,产生较高的重构错误,表明时间序列数据为异常的。 ps:在encoder-decoder模型中有score机制,较高的异常分数是更可能为异常的。
最常见的Seq2Seq模型是解码器-编码器(Encoder-Decoder)模型,由于时序数据的序列性质,通常情况下,我们使用RNN(Recurrent Neural Network)在Encoder中得到输入序列的特征向量,再将此特征向量输入Decoder中的另一个RNN模型,逐一生成目标序列的每一个点。本文使用多层长短期记忆网络(LSTM)将输入序列映射到一个固定维度的向量...
又叫Encoder-Decoder模型,适用于输入与输出个数不一样相等的情况(即多对多的循环神经网络,适用于机器翻译等场景)。 其中,Encoder编码器和Decoder解码器可以使用RNN、LSTM和GRU,均适用这种变体结构。 同时,这种结构也可以与双向、深层的变体结构同时使用,不冲突的。