ln(1+x)的不定积分 网讯 网讯| 发布2021-12-02 ∫ln(1+x)dx=x*ln(1+x)-∫xd(ln(1+x))=x*ln(1+x)-∫[x/(1+x)]dx=x*ln(1+x)-∫[(1+x)-1]/(1+x)dx=x*ln(1+x)-∫[1-(1/1+x)]dx=x*ln(1+x)-x+ln(1+x)+C=(x+1)*ln(1+x)-x+C 扩展资料: 函数f(x)的所有...
解答 x-ln(1+x)等价于1/2x^2。lim(x-ln(1+x))/x²=lim(1-1/(1+x))/2x=lim1/2(1+x)=1/2∴x-ln(1+x)~x²/2等价无穷小:1、e^x-1~x (x→0)2、 e^(x^2)-1~x^2 (x→0)3、1-cosx~1/2x^2 (x→0)4、1-cos(x^2)~1/2x^4 (x→0)5、sinx~x (x→0)6、t...
对数ln(1-x)的泰勒公式是:ln(1+x)=x-x^2\2+x^3\3-x^4\4+...+(-1)^(n-1)x^n\n+O(x^(n+1)) 泰勒公式是一个用函数在某点的信息描述其附近取值的公式。如果函数足够平滑的话,在已知函数在某一点的各阶导数值的情况之下,泰勒公式可以用这些导数值做系数构建一个多项式来近似函数在这一点的...
解答一 举报 把ln(1+x)用麦克劳林公式展开:ln(1+x)=x-(x^2)/2+(x^3)/3-……所以ln(1+x)-x=-(x^2)/2+(x^3)/3-……所以它的等价无穷小=-(x^2)/2 解析看不懂?免费查看同类题视频解析查看解答 更多答案(1) 相似问题 证明当x→0时无穷小量ln√(1+x/1-x)与x是等价无穷小 当x→...
如图所示,可以画图或者直接解 望采纳
解答一 举报 分部积分法:ln(1+x)的不定积分=xln(1+x)-(x/(1+x))的不定积分=xln(1+x)-1的不定积分+(1/(1+x))的不定积分=xln(1+x)-x+ln(1+x)+C 解析看不懂?免费查看同类题视频解析查看解答 更多答案(1) 相似问题 ln(1/x)的积分怎么求 求积分:ln(1-x)dx/x ln(x+√x^2+1)的...
函数y=ln(1+x)/(1-x)是( ) A. 奇函数 B. 偶函数 相关知识点: 代数 函数 函数奇偶性的性质与判断 奇偶性的代数判断 奇偶性的应用 试题来源: 解析 A f(x)=y=ln(1+x)/(1-x) f(-x)=ln(1-x)/(1+x) -f(x)=-ln(1+x)/(1-x)=ln(1-x)/(1+x)=f(-x) ∴函数为奇函数。
设f(x)=x-1-ln x(x 0), 则f'(x)=1-1x=(x-1)x, 令f'(x)=0,解得x=1, 当0 x 1时,f'(x) 0,当x 1时,f'(x) 0, ∴ f(x)在(0,1)上是减函数,在(1,+∞ )上是增函数, ∴当x=1时,f(x)取得极小值,也是f(x)的最小值, 最小值为f(1)=1-1-ln 1=0, ∴ f(x)≥ ...
利用两个重要极限中的公式:limx→∞(1+1x)x=e将其进行变量替换,可以化为更一般的形式:limα(x)→0(1+α(x))1α(x)=e∵ln(1+x)x=1+ln(1+x)−xx,且有limx→0ln(1+x)−xx=0∴limx→0[ln(1+x)x]1ex−1=limx→0[1...本...
让我们来看看下面几个多项式函数对lnx的拟合。 1、一号选手2(x−1)x+1 黑线为ln(x) 看起来一号选手仅在(12,2)拟合得比较好,其余地方便不尽如人意。 2、二号选手3(x−1)(x+1)x2+4x+1 黑线为ln(x) 看起来二号选手在(\frac13,3)都拟合得很好呢,其余地方也总体还行。