实际上“x可以替换成任意的无穷小”这句话是错误的,只有同阶的无穷小才可以替换(无穷大的情况类似),要注意同阶这个概念.1是可以替换的,假设替换的函数h(x)→1(x→0),只要ln(x+h(x))/x→1(x→0),就可以相关推荐 1关于高数极限的问题,当x趋近于0的时候 ln(x+1)与x等价,x可以替换成任意的无穷小...
因为当x→0时,lim(x→0)(ln(x+1)/x)=lim(x→0)(1/(1+x)/1)=1(洛必达法则)。所以lim(x→0)(ln(1+x))=lim(x→0)(x)。所以是等价无穷小
1. 当x趋近于0时,ln(1+x)与x的关系可以近似为ln(1+x)~x。2. 通过求极限lim(x->0) ln(1+x)/x,我们可以得到这个关系。3. 我们可以将ln(1+x)/x写成ln[(1+x)^(1/x)]的形式,以便应用极限运算。4. 根据一个重要的极限定理,lim(x->0) (1+x)^(1/x)等于自然对数的底e。5...
2、无穷小就是以数零为极限的变量,x趋于0, ln(x+1)/x上下做e的指数,得到(x+1)/e^x,x趋于0即有1/1=1,所以ln(x+1)等价于x。
这个不是相等,而是在x→0时ln(1+x)和x是等价无穷小,因此在乘、除法时可以等价替换。
1. 要证明ln(1+x)和x是等价无穷小,我们首先考虑极限lim(x→0)ln(1+x)/x。2. 使用洛必达法则(L'Hôpital's Rule)计算这个极限,我们得到lim(x→0)(1/(1+x))。3. 当x趋向于0时,1/(1+x)趋向于1,因此极限的结果是1。4. 根据等价无穷小的定义,如果在同一自变量的趋向...
建议你可以这样理解:“x趋向于0的时候,ln(x+1)等价于x”实际上只是说明了x趋向于0的时候ln(x+...
1+x)的大小,可以考虑两者的定义域。对于x,可以是任意实数,对于ln(1+x),定义域是x>-1。当x>-1时,ln(1+x)是一个递增函数,随着x的增大,ln(1+x)的值也会增大。当x=-1时,ln(1+x)=ln(0)是无定义的。当x-1时,ln(1+x)的值会大于x;当x<-1时,ln(1+x)的值会小于x。
当x→0 时,用极限(1+x)^(1/x) = e 两边取对数得1/x ln(1+x) = 1 所以ln(1+x) x 另外还可以用ln(1+x)的泰勒展开式 ln(1+x) = x - x^2/2 + x^3/3 - x^4/4 + .取第一项得 ln(1+x)~x
ln(1+x)和x比较大小,在定义域为R上 y=ln(1+x)的定义域为1+x>0,即x>-1;y=x定义域是R;因此只能在(-1,+∞)比较.y'=1/(1+x),故y'(0)=1;即y=ln(1+x)在(0,0)处的切线与直线y=x重合;而当x≠0时曲线y=ln(1+x)都 在直线y=x的下面.故可断言:x=0时ln(1+x)=x...