ln等价无穷小替换是-/2。把ln用麦克劳林公式展开:ln=x-/2+/3-所以ln-x=-/2+/3-所以它的等价无穷小=-/2。等价无穷小是现代词,是一个专有名词,指的是数学术语,是大学高等数学微积分使用最多的等价替换。无穷小就是以数零为极限的变量。确切地说,当自变量x无限接近某个值x0时,函数值f...
正文 1 ln(1+x)等价无穷小替换是-(x^2)/2。把ln(1+x)用麦克劳林公式展开:ln(1+x)=x-(x^2)/2+(x^3)/3-……所以ln(1+x)-x=-(x^2)/2+(x^3)/3-……所以它的等价无穷小=-(x^2)/2。换底公式设b=a^m,a=c^n,则b=(c^n)^m=c^(mn) ①对①取以a为底的对数,有:log(a...
ln(1+x)等价无穷小替换是x→0,ln(1+x)~x~sinx~tanx~arcsinx~arctanx~(e^x)-1;故ln(1-x)~(-x)~sin(-x)~tan(-x)~arcsin(-x)~arctan(-x)~(e^(-x))-1。等价无穷小的使用条件:被代换的量,在去极限的时候极限值为0。被代换的量,作为被乘或者被除的元素时,可以用等价无穷小代换,...
x→0,ln(1+x)~x~sinx~tanx~arcsinx~arctanx~(e^x)-1;故ln(1-x)~(-x)~sin(-x)~tan(-x)~arcsin(-x)~arctan(-x)~(e^(-x))-1。等价无穷小的使用条件:被代换的量,在去极限的时候极限值为0。被代换的量,作为被乘或者被除的元素时,可以用等价无穷小代换,但是作为加减的元...
当x趋近0时,ln(1+ax)是趋近于ax的,比值是一个1,所以是等价无穷小 lnx等价无穷小代换变成x-1(x>1)lnx趋近于x-1,其中x从正向无限趋近于1,此时不是严格的等价无穷小.准确的说是趋近于1时的等价小。
1. 要证明ln(1+x)和x是等价无穷小,我们首先考虑极限lim(x→0)ln(1+x)/x。2. 使用洛必达法则(L'Hôpital's Rule)计算这个极限,我们得到lim(x→0)(1/(1+x))。3. 当x趋向于0时,1/(1+x)趋向于1,因此极限的结果是1。4. 根据等价无穷小的定义,如果在同一自变量的趋向...
在X趋于0是:ln(1+x)/x=e不等于1,不是等价无穷小量呢.你列子是错的.等价无穷小量不是唯一的 在x趋于0 ,sinx ,tanx 都是等价的.结果一 题目 等价无穷小是唯一的吗,比如ln(1+x)与x等价无穷小,但与x-x2/2也等 如果是这样,那么等价等价于x和等价于x+x2/2有什么区别呢,为什么有的题目中说不同...
可以的,它是整个式子中的乘除因子。
ln的等价无穷小是1。 等价无穷小是lnx等价无穷小代换变成x-1(x>1),如果该项是参与乘法或者除法运算的话就可以用。例如:x→0,ln(1+x)~x~sinx~tanx~arcsinx~arctanx~(e^x)-1;故ln(1-x)~(-x)~sin(-x)~tan(-x)~arcsin(-x)~arctan(-x)~(e^(-x))-1。 等价无穷小的使用条件是被代换的量...
当$x$的取值足够小,且需要高精度计算时,可以使用等价无穷小代替$\ln(1+x)$,即将$\ln(1+x)$替换为$x$,因为当$x$趋近于0时,$\ln(1+x)$与$x$的差别相对较小。需要注意的是,在使用等价无穷小近似时,需要对$x$的范围进行限制,一般取$x$的取值范围在$[-0.5,0.5]$左右。在...