1 ln(1+x)等价无穷小替换是-(x^2)/2。把ln(1+x)用麦克劳林公式展开:ln(1+x)=x-(x^2)/2+(x^3)/3-……所以ln(1+x)-x=-(x^2)/2+(x^3)/3-……所以它的等价无穷小=-(x^2)/2。换底公式设b=a^m,a=c^n,则b=(c^n)^m=c^(mn) ①对①取以a为底的对数,有:log(a)(b)...
正文 1 ln(1+x)等价无穷小替换是x→0,ln(1+x)~x~sinx~tanx~arcsinx~arctanx~(e^x)-1;故ln(1-x)~(-x)~sin(-x)~tan(-x)~arcsin(-x)~arctan(-x)~(e^(-x))-1。等价无穷小的使用条件:被代换的量,在去极限的时候极限值为0。被代换的量,作为被乘或者被除的元素时,可以用等价无穷...
lim(x→0) ln(1+x)/x=lim(x→0) ln(1+x)^(1/x)=ln[lim(x→0) (1+x)^(1/x)]由两个重要极限知:lim(x→0) (1+x)^(1/x)=e,所以原式=lne=1,所以ln(1+x)和x是等价无穷小 等价无穷小是无穷小的一种。在同一点上,这两个无穷小之比的极限为1,称这两个无穷小是等价...
1. 要证明ln(1+x)和x是等价无穷小,我们首先考虑极限lim(x→0)ln(1+x)/x。2. 使用洛必达法则(L'Hôpital's Rule)计算这个极限,我们得到lim(x→0)(1/(1+x))。3. 当x趋向于0时,1/(1+x)趋向于1,因此极限的结果是1。4. 根据等价无穷小的定义,如果在同一自变量的趋向过...
等价无穷小是现代词,是一个专有名词,指的是数学术语,是大学高等数学微积分使用最多的等价替换。无穷小就是以数零为极限的变量。确切地说,当自变量x无限接近某个值x0时,函数值f与零无限接近,即f=0=0),则称f为当x→x0时的无穷小量。从无穷小的比较里可以知道,如果limb/a^n=常数,就说...
ln的等价无穷小是1。 等价无穷小是lnx等价无穷小代换变成x-1(x>1),如果该项是参与乘法或者除法运算的话就可以用。例如:x→0,ln(1+x)~x~sinx~tanx~arcsinx~arctanx~(e^x)-1;故ln(1-x)~(-x)~sin(-x)~tan(-x)~arcsin(-x)~arctan(-x)~(e^(-x))-1。 等价无穷小的使用条件是被代换的量...
ln(1+x)并不总是等于1+x。当x是一个足够接近于零的小数时,ln(1+x)和1+x之间可以存在一种称为“等价无穷小”的关系,这种关系表示的是当x趋近于零时,ln(1+x)和1+x之间的相对误差会变得非常小。更具体地说,在x趋于零的情况下,ln(1+x)和1+x的比值也趋于一,即lim_{x \to 0} ...
什么是等价无
lim(x→0) ln(1+x)/x =lim(x→0) ln(1+x)^(1/x)=ln[lim(x→0) (1+x)^(1/x)]由两个重要极限知lim(x→0) (1+x)^(1/x)=e 所以原式=lne=1,所以ln(1+x)和x是等价无穷小
证明过程如下:lim(x>0)ln(1+x)/x 用洛必达法则得 lim(x>0)1/(1+x)=1 所以是等价无穷小