∫lnsin2xdx(0~π/4) (表示从0到π/4的定积分)=∫ln(2sinx cosx)dx(0~π/4)=π/4*ln2+∫lnsinxdx(0~π/4)+∫lncosxdx(0~π/4)=π/4*ln2+∫lnsinxdx(0~π/4)+∫lnsinxdx(π/4~π/2) (对最后一个积分换元)=π/4*ln2+∫lnsinxdx(0~π/2)=π/4*ln2+2∫lnsin2xdx(0...
=∫ln(2sinx cosx)dx(0~π/4)=π/4*ln2+∫lnsinxdx(0~π/4)+∫lncosxdx(0~π/4)=π/4*ln2+∫lnsinxdx(0~π/4)+∫lnsinxdx(π/4~π/2) (对最后一个积分换元)=π/4*ln2+∫lnsinxdx(0~π/2)=π/4*ln2+2∫lnsin2xdx(0~π/4) (换元)由第一个式子与最后一个式子相等即...
\begin{aligned} a_n=&\frac1\pi\int_{-\pi}^{\pi}\cos nx\ln\cos \frac x2dx\\ =&\frac2\pi\underbrace{\int_{0}^{\pi}\cos nx\ln\cos \frac x2dx}_{x\mapsto 2x}\\ =&\frac4\pi\int_{0}^{\frac \pi2}\cos 2nx\ln\cos xdx\\ =&\frac2{n\pi}\int_{0}^{\frac \pi...
分部积分欧拉公式分部积分∫lnsinxdx=分部积分xlnsinx−∫xcosxsinxdx=欧拉公式...
我求不定积分∫(ln(3+sin2x))/((cosx)^4)dx#高等数学#【分部积分法偷工减料节约成本】#HLWRC高数#高数数学求解∫(x^4)(e^x)/(x+2)⁴dx。#数学分析#有理函数分式分解待定系数法+四元一次方程组。三角函数...
具体回答如下:积分限分为0到π/4,π/4到π/2。π/4到π/2上的积分换元x=π/4-t,化为lncosx 从0到π/4的积分。原式 =∫(0到π/4) (lnsinx+lncosx)dx =∫(0到π/4) (-ln2+lnsin(2x))dx =-π/4×ln2+∫(0到π/4) lnsin2x dx =-π/4×ln2+1/2×∫(0到...
=∫[ln(cosx)+ln(sinx)+ln2]dx =∫ln(2cosxsinx)dx =∫ln(sin2x)dx 3.找出∫ln(sin2x)dx与I的关系。令2x=t,则有 ∫ln(sin2x)dx =(1/2)∫ln(sint)dt(积分区域在0到π)=(1/2)[∫ln(sint)dt+∫ln(sint)dt](后一个积分区域在π/2到π)而对于∫ln(sint)dt(积分区域...
\sin x\cos x){\rm d}x=\int_0^{\frac{\pi}{2}}\ln^2\left(\frac{1}{2}\sin 2x\...
这里使用欧拉积分指代如下定积分:∫0π2lnsinxdx解:因为cosx和sinx在积分区间[0,π2]上对称,所以有I=∫0π2lnsinxdx=∫0π2lncosxdx2I=∫0π2(lnsinx+lncosx)dx=∫0π2ln(sinxcosx)dx=12∫0π2lnsin2x2d(2x)=12∫0π2(ln...
1.先证:∫ln(cosx)dx=∫ln(sinx)dx.令x=(π/2)-t代入积分式可得∫ln[cos((π/2)-t)]dt=∫ln(sint)dt.得证.2.设所求积分为I,则有2I+(π/2)ln2=∫ln(cosx)dx+∫ln(sinx)dx+(π/2)ln2=∫[ln(cosx)+ln(sinx)+ln2]dx=∫ln(2cosxsinx)dx=∫ln(sin2x)dx3.找出∫ln(sin2x)dx与...