ln(1+x)的等价无穷小替换 ln(1+x)等价无穷小替换是x→0,ln(1+x)~x~sinx~tanx~arcsinx~arctanx~(e^x)-1;故ln(1-x)~(-x)~sin(-x)~tan(-x)~arcsin(-x)~arctan(-x)~(e^(-x))-1。 等价无穷小的使用条件:被代换的量,在去极限的时候极限值为0。被代换的量,作为被乘或者被除的元素时...
ln(1+x)等价无穷小替换是x→0,ln(1+x)~x~sinx~tanx~arcsinx~arctanx~(e^x)-1;故ln(1-x)~(-x)~sin(-x)~tan(-x)~arcsin(-x)~arctan(-x)~(e^(-x))-1。简介 1、e^x-1~x (x→0)2、 e^(x^2)-1~x^2 (x→0)3、1-cosx~1/2x^2 (x→0)4、1-cos(x^2...
ln(1+x)等价无穷小替换是-(x^2)/2。 把ln(1+x)用麦克劳林公式展开: ln(1+x)=x-(x^2)/2+(x^3)/3-…… 所以ln(1+x)-x=-(x^2)/2+(x^3)/3-…… 所以它的等价无穷小=-(x^2)/2。换底公式 设b=a^m,a=c^n,则b=(c^n)^m=c^(mn) ①...
ln等价无穷小替换是-/2。把ln用麦克劳林公式展开:ln=x-/2+/3-所以ln-x=-/2+/3-所以它的等价无穷小=-/2。等价无穷小是现代词,是一个专有名词,指的是数学术语,是大学高等数学微积分使用最多的等价替换。无穷小就是以数零为极限的变量。确切地说,当自变量x无限接近某个值x0时,函数值f...
实际上“x可以替换成任意的无穷小”这句话是错误的,只有同阶的无穷小才可以替换(无穷大的情况类似),要注意同阶这个概念.1是可以替换的,假设替换的函数h(x)→1(x→0),只要ln(x+h(x))/x→1(x→0),就可以相关推荐 1关于高数极限的问题,当x趋近于0的时候 ln(x+1)与x等价,x可以替换成任意的无穷小...
因为ln(1+x)~x是靠e的定义式得到的。只要是极限中最外层的乘除运算就可以替换。
/x=lim(x->0)ln[(1+x)^(1/x)]根据两个重要极限之一,lim(x->0)(1+x)^(1/x)=e,得:=lne=1求极限时,使用等价无穷小的条件:1、被代换的量,在取极限的时候极限值为0。2、被代换的量,作为被乘或者被除的元素时可以用等价无穷小代换,但是作为加减的元素时就不可以。
综述:x→0,ln(1+x)~x~sinx~tanx~arcsinx~arctanx~(e^x)-1;故ln(1-x)~(-x)~sin(-x)~tan(-x)~arcsin(-x)~arctan(-x)~(e^(-x))-1。等价无穷小替换是计算未定型极限的常用方法,它可以使求极限问题化繁为简,化难为易。各种极限问题才有了切实可行的判别准则。在分析学的...
当我们研究当x趋向于0时,ln(1+x)与x的关系,我们发现两者具有等价无穷小的特性。为了证明这一点,我们可以利用两个重要极限进行推导。首先,我们观察表达式lim(x→0) ln(1+x)/x。通过转换,我们可以将其变形为lim(x→0) ln(1+x)^(1/x)。进一步地,这可以写为ln[lim(x→0) (1+x)^(...
在求ln(1+x)的等价无穷小替换时,我们需要考虑x的取值范围。首先,我们考虑x的取值范围。当x=0时,ln(1+x)=0。当x=1e-05时,ln(1+x)=0.00000999995000039884。当x=1e-10时,ln(1+x)=1.00000008269037E-10。由上述取值可以看出,当x趋于0时,ln(1+x)趋于0。因此,在求ln(1+x)的...