ln(1+x)与x等价的证明,要清楚点啊. 答案 证明一:由洛必达法则,lim[In(1+x)/x]n→0=lim[In(1+x)]'/(x)'n→0 =lim[1/(1+x)] n→0=1证法二:将In(1+x)按麦克劳林公式展开 In(1+x)=x-x^2/2+x^3/3+...+(-1)^(n-1)*x^n/n+...In(1+x)-x=-x^2/2+x^3/3+...当...
1. 要证明ln(1+x)和x是等价无穷小,我们首先考虑极限lim(x→0)ln(1+x)/x。2. 使用洛必达法则(L'Hôpital's Rule)计算这个极限,我们得到lim(x→0)(1/(1+x))。3. 当x趋向于0时,1/(1+x)趋向于1,因此极限的结果是1。4. 根据等价无穷小的定义,如果在同一自变量的趋向过...
ln(1+x)等价于x。当f(x)/g(x)=1(x趋向于x0)时称f(x)与g(x)等价无穷小,因为x趋向于0时ln(1+x)/x=1,因此这两个就是一对常用的等价无穷小量。证明过程简单说一下:将1/x放到ln里面,此时ln里面是(1+x)^(1/x),当x趋于0时这个极限为e(两个重要极限之一),因此整体上...
证明:当x>0时,x>ln(1十x),用拉格朗日定理证明。拍张图,谢谢 ! 我来答 你的回答被采纳后将获得: 系统奖励15(财富值+成长值)+难题奖励20(财富值+成长值)1个回答 #热议# 妇女节专题:女性如何自我保护?百度网友af34c30f5 2018-06-05 · TA获得超过4.3万个赞 知道大有可为答主 回答量:1.8万 ...
证明过程如下:lim(x>0)ln(1+x)/x 用洛必达法则得 lim(x>0)1/(1+x)=1 所以是等价无穷小
既然证明二者为等价无穷小 那么就是x趋于0的时候 二者比值的极限值趋于1 lim(x趋于0) ln(1+x) /x 使用洛必达法则得到 原极限=lim(x趋于0) 1/(1+x)代入x=0,极限值当然等于1 所以ln(1+x) 和x是等价无穷小
【答案】:[证明]令f(x)=ln(1+x)-x,则f(0)=0,f'(x)=<0,所以,f(x)在(0,+∞)内单减,从而当x>0时,f(x)<f(0)=0,即ln(1+x)<x.[点评]此结论可以直接使用.
f(x)=ln(1+x)-x f'(x)=1/(1+x)-1=-x/(1+x)定义域1+x>0 x>-1 即f'(x)分母大于0 所以-1<x<0,f'(x)>0,增函数 x>0,f'(x)<0.减函数 所以x=0有极大值,也是最大值 f(0)=0 所以f(x)<=0 所以ln(1+x)<=x 这里可以取等号,即x=0时 ...
1、做比值,是个0/0不定式,所以用罗比达法则上下求导是(1/1+x)/1,很明显,当x趋向0时,他们的比值等于1,是等价无穷小 2、将ln(1+x)用泰勒公式展开,因为当x趋向0时后面的项也趋向0,可略去只剩下1/1+x,同上也是1
limln(1+x)/x (x趋于0) =lim1/1+x (运用洛必达法则) =1 所以ln(1+x)和x是等价无穷小 分析总结。 为什么ln1x和x是等价无穷小啊怎么证明出来的结果一 题目 为什么ln(1+x)和x是等价无穷小啊,怎么证明出来的详细说明或给出证明过程啊. 答案 limln(1+x)/x (x趋于0)=lim1/1+x (运用洛必达法...