f'(x) = -x/(1 + x) 当x > 0时,f'(x) < 0,f(x)单调递减; 当x < 0时,f'(x) > 0,f(x)单调递增。 因此,f(x)在x = 0处取得最大值,即f(0) = 0。 所以,对于任意实数x,有ln(1 + x) < x。 以上为西华大学期末数学试卷的答案,仅供参考。实际考试答案以官方公布为准。反馈...
解析 证明:设 f(x)=ln (x+1)-x 则f'(x)=1/(x+1) -1=-x/(x+1), 当x≥ 0时 f'(x)≤ 0, 故此时 f(x)为减函数 所以f(x)≤ f(0)=0, 所以ln (1+x)-x≤ 0,即ln (1+x)x≤ x结果一 题目 已知${x}^{2}+3x-1=0$,求:(1)${x}^{2}+\dfrac{1}{{x}^{2}}$;(2...
设f(x)=x-ln(1+x),x>=0 则f'(x)=1-1/(1+x)=x/(1+x) 当x>0时,f'(x)>0 故f(x)在(0,+∞)上单调递增, 当x>0时,f'(x)>f(0)=0 即ln(1+x)<x,x>o
对任意b>0,f(x)在[0,b]连续,在(0,b)可导.根据中值定理,存在0 (f(b)-f(0))/(b-0)>1 -> f(b)>b+1 -> e^b>b+1 -> b>ln(1+b)即对任意x>0,有x>ln(1+x)
巧用ln(1+x)小于x证明不等式
结果1 题目证明:当x≥0时,ln(1+x)≤x 相关知识点: 试题来源: 解析 设f(x)=ln(1+x)-x ∴f(x)-1/(1+x)-1 ∵x≥0∴f'(x)≤0 ∴x≥0时f(x)为减函数 ∴x≥0,f(x)≤0 即ln(1+x)≤x 综上所述,ln(1+x)≤x 反馈 收藏 ...
所以e^[ln(1+x)-x]>1所以ln(1+x)-x>0所以ln(1+x)>x结果一 题目 证明:ln(1+x)小于等于x,当x大于-1时成立用导数证 答案 e^[ln(1+x)-x]=(1+x)/e^x档x>-1的时候e^[ln(1+x)-x]=(1+x)/e^x又因为e^x=1+x+x^2/2+……所以e^x>1+x所以e^[ln(1+x)-x]>1所以ln(1+x...
作y=ln(1+x)-x,定义域为(-1,+∞)则y'=1/(1+x)-1=-x/(x+1)令y'=0,解得x=0 ∵x>-1,∴x+1>0,∴当-1<x<0时,y'>0;当x>0时,y'<0 ∴y在定义域上先增後减 ∴当x=0时,y有最大值,最大值为ln1=0 即y=ln(1+x)-x≤0恒成立,当且仅当x=0时取等号 ∴在x≠0...
ln(1+x)<x 贺兰堇 七彩云南 7 可以用单调有界原理,这个极限叫做欧拉常数。 轻仞死神 十三罄钟 13 我想法大概是inx拆成in1*2*3/2*…然后变in的加法,和上面的比较,再换种拆法再比较 呵呵宝贝enjoy 十万溪泽 10 分母Lnn大于1小于n-1 分子最大都取1为n 最小都取1/n为1 然后组合一下 贴吧用...
初等数学解决这个问题,有一定难度。因为这里书写不便,故将我的答案做成图像贴于下方,谨供楼主参考(若图像显示过小,点击图片可放大)不好意思,上面证明了x>lnx,抱歉。其实,等价于lnx<x 特别说明:lnx永远不会等于x!