ln(1+x)与x等价的证明,要清楚点啊. 答案 证明一:由洛必达法则,lim[In(1+x)/x]n→0=lim[In(1+x)]'/(x)'n→0 =lim[1/(1+x)] n→0=1证法二:将In(1+x)按麦克劳林公式展开 In(1+x)=x-x^2/2+x^3/3+...+(-1)^(n-1)*x^n/n+...In(1+x)-x=-x^2/2+x^3/3+...当...
1. 要证明ln(1+x)和x是等价无穷小,我们首先考虑极限lim(x→0)ln(1+x)/x。2. 使用洛必达法则(L'Hôpital's Rule)计算这个极限,我们得到lim(x→0)(1/(1+x))。3. 当x趋向于0时,1/(1+x)趋向于1,因此极限的结果是1。4. 根据等价无穷小的定义,如果在同一自变量的趋向过...
证明一:由洛必达法则,lim[In(1+x)/x]n→0=lim[In(1+x)]'/(x)'n→0 =lim[1/(1+x)] n→0=1证法二:将In(1+x)按麦克劳林公式展开 In(1+x)=x-x^2/2+x^3/3+...+(-1)^(n-1)*x^n/n+...In(1+x)-x=-x^2/2+x^3/3+...当x→0,右... ...
证明一:由洛必达法则,lim[In(1+x)/x]n→0=lim[In(1+x)]'/(x)'n→0 =lim[1/(1+x)] n→0=1证法二:将In(1+x)按麦克劳林公式展开 In(1+x)=x-x^2/2+x^3/3+...+(-1)^(n-1)*x^n/n+...In(1+x)-x=-x^2/2+x^3/3+...当x→0,右... ...
证明:当x>0时,x>ln(1十x),用拉格朗日定理证明。拍张图,谢谢 ! 我来答 你的回答被采纳后将获得: 系统奖励15(财富值+成长值)+难题奖励20(财富值+成长值)1个回答 #热议# 妇女节专题:女性如何自我保护?百度网友af34c30f5 2018-06-05 · TA获得超过4.3万个赞 知道大有可为答主 回答量:1.8万 ...
【答案】:[证明]令f(x)=ln(1+x)-x,则f(0)=0,f'(x)=<0,所以,f(x)在(0,+∞)内单减,从而当x>0时,f(x)<f(0)=0,即ln(1+x)<x.[点评]此结论可以直接使用.
证明当x>0时,ln(1+1/x)>1/(1+x),本视频由招财喵提供,27次播放,好看视频是由百度团队打造的集内涵和颜值于一身的专业短视频聚合平台
ln(1+x)等价于x。当f(x)/g(x)=1(x趋向于x0)时称f(x)与g(x)等价无穷小,因为x趋向于0时ln(1+x)/x=1,因此这两个就是一对常用的等价无穷小量。证明过程简单说一下:将1/x放到ln里面,此时ln里面是(1+x)^(1/x),当x趋于0时这个极限为e(两个重要极限之一),因此整体上...
证明过程如下:lim(x>0)ln(1+x)/x 用洛必达法则得 lim(x>0)1/(1+x)=1 所以是等价无穷小
既然证明二者为等价无穷小 那么就是x趋于0的时候 二者比值的极限值趋于1 lim(x趋于0) ln(1+x) /x 使用洛必达法则得到 原极限=lim(x趋于0) 1/(1+x)代入x=0,极限值当然等于1 所以ln(1+x) 和x是等价无穷小