分布积分法求 =xln(1+x)-∫x/(1+x)dx=xln(1+x)-∫(1+x-1)/(1+x)dx=xln(1+x)-{x-∫1/(1+x)dx+c}=xln(1+x)-x+ln(1+x)+c 结果一 题目 求不定积分ln(1+x)dx 答案 分布积分法求 =xln(1+x)-∫x/(1+x)dx=xln(1+x)-∫(1+x-1)/(1+x)dx=xln(1+x)-{x-∫1/(1...
∫ln(1+x)dx = ∫ln(1+x)d(1+x) = ∫lntdt = tlnt - ∫td(lnt) = tlnt - ∫dt = tlnt - t + C = (1+x)ln(1+x) - x + C结果一 题目 ln(1+x)的积分怎么算啊? 答案 ∫ln(1+x)dx = ∫ln(1+x)d(1+x) = ∫lntdt = tlnt - ∫td(lnt) = tlnt - ∫dt = tlnt - t...
=x ln(x) -∫ x *(1/x) dx =x ln (x) -∫ dx =x ln (x) -x +C,(C为任意常数).
∫ln(1-x)dx 凑微分 =-∫ln(1-x)d(1-x)分部积分 =-[(1-x)ln(1-x)-∫(1-x)dln(1-x)]=-[(1-x)ln(1-x)-∫(1-x)*1/(1-x) * d(1-x)]=-[(1-x)ln(1-x)+x]=-x-(1-x)ln(1-x)+C =-x+(x-1)ln(1-x)+C ...
lnx的积分公式为:∫lnxdx=xlnx-∫xdlnx=xlnx-∫dx=xlnx-x+C,其中C为常数。积分是微积分学与数学分析里的一个核心概念。通常分为定积分和不定积分两种。 求lnx的不定积分 1、利用分步积分法: ∫lnxdx =xlnx-∫xd(lnx) =xlnx-∫x*1/xdx
百度试题 结果1 题目求不定积分ln(1+x)dx 相关知识点: 试题来源: 解析 分布积分法求 =xln(1+x)-∫x/(1+x)dx=xln(1+x)-∫(1+x-1)/(1+x)dx=xln(1+x)-{x-∫1/(1+x)dx+c}=xln(1+x)-x+ln(1+x)+c 反馈 收藏
答案解析 查看更多优质解析 解答一 举报 ∫ln(1+x)dx = ∫ln(1+x)d(1+x) = ∫lntdt = tlnt - ∫td(lnt) = tlnt - ∫dt = tlnt - t + C = (1+x)ln(1+x) - x + C 解析看不懂?免费查看同类题视频解析查看解答 更多答案(1) ...
分布积分法求 =xln(1+x)-∫x/(1+x)dx=xln(1+x)-∫(1+x-1)/(1+x)dx=xln(1+x)-{x-∫1/(1+x)dx+c}=xln(1+x)-x+ln(1+x)+c 结果一 题目 求不定积分ln(1+x)dx 答案 分布积分法求 =xln(1+x)-∫x/(1+x)dx=xln(1+x)-∫(1+x-1)/(1+x)dx=xln(1+x)-{x-∫1/(...
1+ x) dx 分部积分 =xln(1+x) - ∫ [x/(1+ x)] dx =xln(1+x) - ∫ [1 - 1/(1+ x)] dx =xln(1+x) - x +ln|1+ x| + C 得出 ∫ln(1+ x) dx=xln(1+x) - x +ln|1+ x| + C 😄: ∫ln(1+ x) dx=xln(1+x) - x +ln|1+ x| + C ...
答案解析 查看更多优质解析 解答一 举报 ∫ln(1+x)dx = ∫ln(1+x)d(1+x) = ∫lntdt = tlnt - ∫td(lnt) = tlnt - ∫dt = tlnt - t + C = (1+x)ln(1+x) - x + C 解析看不懂?免费查看同类题视频解析查看解答 更多答案(1) ...