1. 要证明ln(1+x)和x是等价无穷小,我们首先考虑极限lim(x→0)ln(1+x)/x。2. 使用洛必达法则(L'Hôpital's Rule)计算这个极限,我们得到lim(x→0)(1/(1+x))。3. 当x趋向于0时,1/(1+x)趋向于1,因此极限的结果是1。4. 根据等价无穷小的定义,如果在同一自变量的趋向过...
ln(1+x)与x等价的证明,要清楚点啊. 答案 证明一:由洛必达法则,lim[In(1+x)/x]n→0=lim[In(1+x)]'/(x)'n→0 =lim[1/(1+x)] n→0=1证法二:将In(1+x)按麦克劳林公式展开 In(1+x)=x-x^2/2+x^3/3+...+(-1)^(n-1)*x^n/n+...In(1+x)-x=-x^2/2+x^3/3+...当...
x趋于0,ln(1+x)与x是等价无穷小 这是因为:令 g(x) = ln(1+x),g(0) = 0;[ln(1+x)] ' = 1 / (1+x),g'(0) = 1;[ln(1+x)] '' = -1 / (1+x)^2,g''(0) = -1;[ln(1+x)] ''' = 2 /...
百度试题 结果1 题目当x→0时,ln(1+x)与x比较是( )。(2 分) A. 高阶无穷小量 B. 等价无穷小量 C. 非等价的同阶无穷小量 D. 低阶无穷小量 相关知识点: 试题来源: 解析 [答案]B [解析] 反馈 收藏
1. 当x趋近于0时,ln(1+x)与x的关系可以近似为ln(1+x)~x。2. 通过求极限lim(x->0) ln(1+x)/x,我们可以得到这个关系。3. 我们可以将ln(1+x)/x写成ln[(1+x)^(1/x)]的形式,以便应用极限运算。4. 根据一个重要的极限定理,lim(x->0) (1+x)^(1/x)等于自然对数的底e。5...
当x->0时,ln(1+x)~x lim(x->0) ln(1+x)/x =lim(x->0) ln[(1+x)^(1/x)]根据两个重要极限之一,lim(x->0) (1+x)^(1/x)=e,得:=lne =1 所以ln(1+x)与x是等价无穷小
1+x)的大小,可以考虑两者的定义域。对于x,可以是任意实数,对于ln(1+x),定义域是x>-1。当x>-1时,ln(1+x)是一个递增函数,随着x的增大,ln(1+x)的值也会增大。当x=-1时,ln(1+x)=ln(0)是无定义的。当x-1时,ln(1+x)的值会大于x;当x<-1时,ln(1+x)的值会小于x。
limln(1+x)/x (x趋于0)=lim1/1+x (运用洛必达法则)=1。所以 ln(1+x)和x是等价无穷小。等价无穷小是现代词,是一个专有名词,指的是数学术语,是大学高等数学微积分使用最多的等价替换。无穷小就是以数零为极限的变量。确切地说,当自变量x无限接近某个值x0(x0可以是0、∞、或是别...
ln(1+x)和x比较大小,在定义域为R上 y=ln(1+x)的定义域为1+x>0,即x>-1;y=x定义域是R;因此只能在(-1,+∞)比较.y'=1/(1+x),故y'(0)=1;即y=ln(1+x)在(0,0)处的切线与直线y=x重合;而当x≠0时曲线y=ln(1+x)都 在直线y=x的下面.故可断言:x=0时ln(1+x)=x...
lim(x→0) ln(1+x)/x =lim(x→0) ln(1+x)^(1/x)=ln[lim(x→0) (1+x)^(1/x)]由两个重要极限知lim(x→0) (1+x)^(1/x)=e 所以原式=lne=1,所以ln(1+x)和x是等价无穷小