例如,在机器翻译中,Decoder会根据Encoder生成的源语言文本嵌入向量,逐步生成目标语言文本;在对话生成中,Decoder则会根据用户的输入和上下文信息生成相应的回复。 Encoder-Decoder混合架构 除了纯Encoder或纯Decoder架构外,还有一些LLM采用了Encoder-Decoder混合架构。这种架构结合了Encoder和Decoder的优势,先通过Encoder理解输入文...
encoder-decoder模型分布式训练困难 decoder模型结构简单,其分布式训练相对容易,而encoder-decoder结构的模型由于结构复杂的多导致了训练时工程结构复杂,成本大大增加 有论文证明,encoder-decoder模型在参数量不断增加时不具有显著优势。在模型较小时,由于中间隐变量的存在,decoder部分进行交叉注意力会获得更好的效果,但随着模...
Encoder-Decoder: All you need is attention 包含encoder和decoder两部分 encoder用于对输入input的表征,decoder用于序列outputs生成。 在翻译的场景,比如中文翻译成英文、encoder输入为中文,decoder预测英文。 encoder和decoder都是在基本结构的基础上堆叠而成,堆叠个数对应层数。 Embedding 实现 必要性:embedding是字符转化...
1. Decoder-only 和 Encoder-Decoder 两种框架的对比 Decoder-only 模型带来了 3.9 个 BLEU 的显著改进,当用 U2S 代替声码器合成语音时,缩小了性能差距,证明了 U2S 后端的鲁棒性。2. 多任务训练 U-XLM 在涉及的多个任务(包括 S2ST、ASR、ST、MT 和 TTS)上都取得了可观的性能,验证了 Decoder-only ...
所谓的“decoder-only(仅解码器)”实际上意味着“自回归编码器-解码器”。“encoder only(仅编码器)” 实际上包含一个编码器和解码器(非自回归),而所谓的“encoder-decoder(编码器-解码器)”真实含义是”自回归编码器-解码器“—— Yann Lecun这个小节会简要介绍常见的不同的大模型的模型架构和用例。目...
LLM的3种架构:Encoder-only、Decoder-only、encoder-decoder 个人学习使用, 侵权删 LLM的3种架构:Encoder-only、Decoder-only、encode-decode
Prefix Decoder,即前缀语言模型,其结构介于Causal Decoder和Encoder-Decoder之间。该框架在输入部分采用双向注意力,允许前缀序列中的任意两个token相互可见;而在输出部分则采用单向注意力,类似于Causal Decoder。代表模型有ChatGLM、U-PaLM等。 优点 输入理解充分:由于输入部分采用双向注意力,Prefix Decoder对问题的编码理解...
所以,笔者作出的回答是:LLM 之所以主要都用 Decoder-only 架构,除了训练效率和工程实现上的优势外,在理论上是因为 Encoder 的双向注意力会存在低秩问题,这可能会削弱模型表达能力,就生成任务而言,引入双向注意力并无实质好处。而 Encoder-Decoder 架构之所以能够在某些场景下表现更好,大概只是因为它多了一倍参数。所以...
所以,笔者作出的回答是:LLM 之所以主要都用 Decoder-only 架构,除了训练效率和工程实现上的优势外,在理论上是因为 Encoder 的双向注意力会存在低秩问题,这可能会削弱模型表达能力,就生成任务而言,引入双向注意力并无实质好处。而 Encoder-Decoder 架构之所以能够在某些场景下表现更好,大概只是因为它多了一倍参数。所以...
Encoder-Only:以谷歌的BERT为代表。 Encoder-Decoder:以Meta的BART、谷歌的T5、清华大学的GLM为代表。 Decoder-Only:以OpenAI的GPT、谷歌的Bard、Meta的LLaMA、DeepMind的Chinchilla、Anthropic的Claude为代表。 从2017年发展到现在,基本可以判定Decoder-Only路线胜出,并不是说另外两条路线做不出大语言模型,而是GPT的碾压...