view(-1, seq_length).long() if inputs_embeds is None: inputs_embeds = self.embed_tokens(input_ids) # embed positions if attention_mask is None: attention_mask = torch.ones( (batch_size, seq_length_with_past), dtype=torch.bool, device=inputs_embeds.device ) attention_mask = self....
train_dataset=dataset, peft_config=peft_config, max_seq_length=max_seq_length, tokenizer=tokenizer, packing=True, formatting_func=format_instruction, args=args,)通过调用 Trainer
max_seq_len, self.n_local_kv_heads, self.head_dim, ) ).cuda() def forward( self, x: torch.Tensor, start_pos: int, freqs_cis: torch.Tensor, mask: Optional[torch.Tensor], ): # batch_size 和 sequence length 批大小和每个句子的序列长度 bsz, seqlen, _ = x.shape # 生成q k v...
--batch_size 8:设置批处理的大小为8。 --seq_length 128:设置序列的长度为128。 --learning_rate 5e-4:设置学习率为0.0005。 --lr_scheduler_type linear:设置学习率调度器类型为线性。 --target_modules k_proj o_proj q_proj v_proj:指定在微调中需要特别关注的模型模块。 --output_dir lora_model/:...
--max_seq_length 1024 \ --lora_r 16 --lora_alpha 32 \ --lora_target_modules q_proj k_proj v_proj o_proj \ --load_in_4bit \ --use_peft \ --attn_implementation "flash_attention_2" \ --logging_steps=10 \ --gradient_checkpointing \ ...
Chinese-LLaMA-Alpaca是在通用中文语料上训练了基于 sentencepiece 的20K中文词表并与原版LLaMA模型的32K词表进行合并,排除重复的token后,得到的最终中文LLaMA词表大小为49953。 注意: 在模型精调(fine-tune)阶段 Alpaca 比 LLaMA 多一个 pad token,所以中文Alpaca的词表大小为49954。在后续将 LoRA 权重合并回基础模...
max_seq_length:将max_seq_length设置为None允许我们不施加最大序列长度限制,我们不想截断或填充它们到固定长度,因此将max_seq_length设置为None允许我们使用数据中存在的全部序列长度。 packing:根据文档,ConstantLengthDataset使用这个参数来打包数据集的序列。在ConstantLengthDataset上下文中将packing设置为False可以在处理...
max_seq_len: 3072 # 2048 # max sequence length for model and packing of the dataset # training parameters output_dir: "./llama-3-70b-hf-no-robot" # Temporary output directory for model checkpoints report_to: "tensorboard" # report metrics to tensorboard learning_rate: 0.0002 # learning ...
eos_token_id=tokenizer.eos_token_id,max_length=400, ) for seq in sequences: print (f"{seq ['generated_text']}") 步骤4:运行 Llama 现在,这个脚本已经可以运行了。保存脚本,回到 Conda 环境,输入 python < 脚本名称 >.py 并按回车键来运行脚本。
max_seq_len: 3072 # 2048 # max sequence length for model and packing of the dataset # training parameters output_dir: "./llama-3-70b-hf-no-robot" # Temporary output directory for model checkpoints report_to: "tensorboard" # report metrics to tensorboard ...