Linear Regression and Gradient Descent 随着所学算法的增多,加之使用次数的增多,不时对之前所学的算法有新的理解。这篇博文是在2018年4月17日再次编辑,将之前的3篇博文合并为一篇。 1.Problem and Loss Function 首先,Linear Regression是一种Supervised Learning,有input X,有输出label y。X可以是一维数据,也可...
批梯度下降(batch gradient descent) 如下公式是处理一个样本的表达式: 转化为处理多个样本就是如下表达: 这种新的表达式每一步都是计算的全部训练集的数据,所以称之为批梯度下降(batch gradient descent)。 注意,梯度下降可能得到局部最优,但在优化问题里我们已经证明线性回归只有一个最优点,因为损失函数J(θ)是一...
Linear Regression&Gradient descent 慢慢变强的me 正在搞kg 参考链接1:线性回归与梯度下降算法 - 上品物语 - 博客园 参考链接2:批量梯度下降(BGD)、随机梯度下降(SGD)、小批量随机梯度下降(MSGD)实现过程详解 - 云计算技术频道 - 红黑联盟 一:批量梯度下降法(batch gradient descent,BGD) 批量梯度下降法就是原始...
梯度下降算法会导致局部极值点的产生,解决这个的方法是随机进行初始化,寻找多个最优点结果,在这些最优点中找到最终结果。 批梯度下降算法(batch gradient descent),当数据量较大时,每迭代一次就要遍历全部数据一次,这样会使得运行速度变成龟速。为了解决这个...
Understanding Linear Regression and Gradient DescentSuat, Atan
此现象,被Galton称之为回归现象,即regression. 1.2 什么是线性回归? 回归分析是一种统计工具,它利用两个或两个以上变量之间的关系,由一个或几个变量来预测另一个变量。 回归分析中: 自变量只有一个时,叫做一元线性回归,h(x)=b0+b1x 自变量有多个时,叫做多元线性回归,h(x1,x2,...,xp)=b0+b1x1+...+...
Kaggle uses cookies from Google to deliver and enhance the quality of its services and to analyze traffic. Learn more OK, Got it.Khushee Kapoor · 3y ago· 1,428 views arrow_drop_up22 Copy & Edit37 more_vert Linear Regression & Gradient Descent from ScratchNote...
Browse Library Advanced SearchSign In
线性回归(Linear Regression) 首先要明白什么是回归。回归的目的是通过几个已知数据来预测另一个数值型数据的目标值。假设特征和结果满足线性关系,即满足一个计算公式h(x),这个公式的自变量就是已知的数据x,函数值h(x)就是要预测的目标值。这一计算公式称为回归方程,得到这个方程的过程就称为回归。
Gradient Descent For Linear Regression (在线性回归中使用梯度下降) 其推导过程如下,分别对 J 求 关于theta0和theta1的偏导数: 得到下面应用于线性回归的梯度下降算法: 通过对以上算法的不断迭代,我们求得了最好的假设h(x),其中红色“x”的轨迹,就是算法迭代的过程。