图解机器学习:如何用gradient descent一步一步求解最优linear regression 模型以及其他值得注意的细节.mp4 吴恩达机器学习课程笔记(图解版)_哔哩哔哩 (゜-゜)つロ 干杯~-bilibili p10
ArrayXd sqrErrors= (predictions -_y).array().square();doubleJ =1.0/ (2* rows) *sqrErrors.sum();returnJ; }classGradient_descent {public: Gradient_descent(MatrixXd&x, MatrixXd &y, MatrixXd &t,doubler=0.1,intm=3000): input_X(x), _y(y), theta(t), learning_rate(r), iterate_tim...
code import numpy as np #设置数据集 X = np.array([1, 2, 3, 4, 5]) Y = np.array([5, 7, 9, 11, 13]) #设置超参数 learning_rate = 0.01 B = 0 W = 0 num_iterations = 1000 #梯度下降法 for i in range(num_iterations): #网络模型 Y_hat = W * X + B #误差模型 # E...
批梯度下降(batch gradient descent) 如下公式是处理一个样本的表达式: 转化为处理多个样本就是如下表达: 这种新的表达式每一步都是计算的全部训练集的数据,所以称之为批梯度下降(batch gradient descent)。 注意,梯度下降可能得到局部最优,但在优化问题里我们已经证明线性回归只有一个最优点,因为损失函数J(θ)是一...
title('Linear Regression with Gradient Descent') plt.show() Output Intercept: 4.158093763822134 Slope: 2.8204434017416244 We begin this code by producing some example data. The bias term is subsequently included in the input matrix X to account for the intercept in the linear regression equation....
文章目录 单变量线性回归(Linear Regression with one Variable ) 代价函数 Cost Function 代价函数的直观理解 梯度下降-Gradient Descent 单变量线性回归(Linear Regression with one Variable ) 在这里,我要根据不同房屋尺寸所售出的价格,画出我的数据集。比方说,如果你朋友的房子是 1250 平方尺大... ...
Understanding Linear Regression and Gradient DescentSuat, Atan
GradientDescent实现LearningRate固定LearningRateAdaptiveLearningratesAdagrad方程式的简化,使得 sqrt(t+1)sqrt(t+1)sqrt(t+1)相消了StochasticGradientDescent/随机 Feature Scaling 使得不同的自变量对因变量的影响趋于一致。GradientDescent 吴恩达机器学习(第2周--Multivariate Linear Regression) ...
Stochastic Gradient Descent is an important and widely used algorithm in machine learning. In this post you will discover how to use Stochastic Gradient Descent to learn the coefficients for a simple linear regression model by minimizing the error on a training dataset. After reading this post ...
Gradient Descent For Linear Regression (在线性回归中使用梯度下降) 其推导过程如下,分别对 J 求 关于theta0和theta1的偏导数: 得到下面应用于线性回归的梯度下降算法: 通过对以上算法的不断迭代,我们求得了最好的假设h(x),其中红色“x”的轨迹,就是算法迭代的过程。