批梯度下降(batch gradient descent) 如下公式是处理一个样本的表达式: 转化为处理多个样本就是如下表达: 这种新的表达式每一步都是计算的全部训练集的数据,所以称之为批梯度下降(batch gradient descent)。 注意,梯度下降可能得到局部最优,但在优化问题里我们已经证明线性回归只有一个最优点,因为损失函数J(θ)是一...
图解机器学习:如何用gradient descent一步一步求解最优linear regression 模型以及其他值得注意的细节.mp4 吴恩达机器学习课程笔记(图解版)_哔哩哔哩 (゜-゜)つロ 干杯~-bilibili p10
批梯度下降(batch gradient descent) 如下公式是处理一个样本的表达式: 转化为处理多个样本就是如下表达: 这种新的表达式每一步都是计算的全部训练集的数据,所以称之为批梯度下降(batch gradient descent)。 注意,梯度下降可能得到局部最优,但在优化问题里我们已经证明线性回归只有一个最优点,因为损失函数J(θ)是一...
Learn about Gradient Descent in Linear Regression, a fundamental optimization algorithm used in machine learning for minimizing the cost function.
3逻辑回归中的梯度下降(Logistic Regression Gradient Descent) 假设样本只有两个特征x1和x2,为了计算z,我们需要输入参数w1、w2和b,除此之外还有特征值x1和x2。因此z的计算公式为:z=w1x1 +w2x2 +b 逻辑回归的公式定义如下: 损失函数: 代价函数: 在只考虑单个样本的情况,单个样本的代价函数定义如下:其中a是逻辑...
李宏毅老师机器学习课程笔记——Gradient descent 梯度下降 在上一篇笔记regression回归中,提到了回归过程中参数求解利用了梯度下降法,本篇笔记将对梯度下降法展开深入讨论。 梯度下降是机器学习过程中常见的优化算法,用于求解机器学习算法的模型参数。 一、理论 机器学习算法求解最优参数可以表示为: 其中,L(θ)为loss fu...
线性回归、梯度下降(Linear Regression、Gradient Descent) 实例 首先举个例子,假设我们有一个二手房交易记录的数据集,已知房屋面积、卧室数量和房屋的交易价格,如下表: 假如有一个房子要卖,我们希望通过上表中的数据估算这个房子的价格。这个问题就是典型的回归问题,这边文章主要讲回归中的线性回归问题。
Y = np.array([5, 7, 9, 11, 13]) #设置超参数 learning_rate = 0.01 B = 0 W = 0 num_iterations = 1000 #梯度下降法for i in range(num_iterations): #网络模型 Y_hat = W * X + B #误差模型 # E = np.mean((Y_hat - Y)**2) ...
机器学习中的数学(1)-回归(regression)、梯度下降(gradient descent), 前言: 这个系列主要想能够用数学去描述机器学习,想要学好机器学习,首先得去理解其中的数学意义,不一定要到能够轻松自如的推导中间的公式,不过至少得认识这些式子吧,不然看一些相关的论文可就看不
Understanding Linear Regression and Gradient DescentSuat, Atan