则:PyTorch Lightning:专门为机器学习研究者开发的PyTorch轻量 wrapper通过上面的例子可以看到,nn.parameter.Paramter的requires_grad属性值默认为True。另外上面例子给出了三种读取parameter的方法,推荐使用后面两种(这两种的区别可参阅Pytorch: parameters(),children(),m
pytorch-lighting(pl),基于 PyTorch 的框架。它将学术代码(模型定义、前向 / 反向、优化器、验证等)...
新的PyTorch Lightning类与PyTorch完全相同,只不过LightningModule提供了用于研究代码的结构。 Lightning为PyTorch代码提供了结构 看到?两者的代码完全相同! 这意味着可以像使用PyTorch模块一样完全使用LightningModule,例如预测 或将其用作预训练模型 数据 在本教程中,使用MNIST。 资料来源:维基百科 生成MNIST的三个部分,即...
这使得代码更简洁、易读且易于维护:原生 PyTorch需要手动编写训练循环、设备切换、梯度清零、反向传播等。PyTorch Lightning只需定义LightningModule,训练逻辑由Trainer处理。 模块化和可复用性:PyTorch Lightning 将训练、验证、测试等逻辑封装为模块化的方法(如training_step、validation_step),使得代码更易于复用和扩展:可以...
PyTorch: 灵活,但如果不强制执行一致的代码结构,可能会变得混乱。 典型的模式是将模型定义放在一个文件中,训练逻辑放在另一个文件中,但您可以自由选择。 PyTorch Lightning: 强制执行最佳实践结构:一个类用于 LightningModule,一个类用于数据模块或数据加载器,一个 Trainer 用于协调运行。
PyTorch Lightning的内置功能:PyTorch Lightning具有更广泛的硬件兼容性和分布式训练支持,以及更丰富的内置回调和插件库。 常见问答 Q1:PyTorch Lightning是否完全兼容PyTorch? A1:是的,PyTorch Lightning是在PyTorch之上构建的,因此它与PyTorch完全兼容,并可以与现有的PyTorch代码一起使用。
PyTorch与PyTorch Lightning比较 直接上图。 我们就以构建一个简单的MNIST分类器为例,从模型、数据、损失函数、优化这四个关键部分入手。 模型 首先是构建模型,本次设计一个3层全连接神经网络,以28×28的图像作为输入,将其转换为数字0-9的10类的概率分布。
pytorch lightning与pytorch的区别 pytorch与pycharm的区别,一、基础知识1、python解释器python解释器是将python源码高级语言解析为二进制机器语言的工具。安装python是指安装python解释器。注意:python2.x和python3.x不兼容。2、python编辑器python编辑器有很多,比如pyt
1,pytorch和pytorch lightning的区别 PyTorch Lightning 为您提供构建模型、数据集等所需的 API。 PyTorch 拥有训练模型所需的一切; 然而,深度学习不仅仅是附加层。 在实际训练方面,您需要编写大量样板代码,如果您需要在多台设备/机器上扩展您的训练/推理,则可能需要进行另一组集成。
在深度学习领域,PyTorch和PyTorch Lightning是两个备受关注的框架。PyTorch以其灵活性和动态计算图著称,适合研究和原型开发;而PyTorch Lightning则在PyTorch基础上进行了优化,简化了训练流程,提升了代码可读性和复用性。通过具体实例分析,两者的主要差异在于代码结构、配置管理和性能调优。选择合适的框架取决于项目需求和个人...