LangChain是一个用于开发LLM应用的开源框架,旨在帮助开发者更轻松地构建由大语言模型驱动的应用程序。RAG...
LangChain是一个用于开发LLM应用的开源框架,旨在帮助开发者更轻松地构建由大语言模型驱动的应用程序。RAG...
存储[](https://python.langchain.com/docs/use_cases/question_answering/#step-3.-store"直达第三步。存储")现在我们已经在内存中有了66个文本块,我们需要将它们存储和索引,以便在我们的RAG应用程序中稍后进行搜索。这样做的最常见方式是嵌入每个文档分割的内容,并将这些嵌入上传到向量存储器中。 然后,当我们想...
LangChain为RAG应用程序提供了从简单到复杂的所有构建块,本文要学习的数据连接(Retrieval)模块包括与检索步骤相关的所有内容,例如数据的获取、切分、向量化、向量存储、向量检索等模块(见下图)。 1. Document loaders 文档加载模块 LangChain封装了一系列类型的文档加载模块,例如PDF、CSV、HTML、JSON...
RAG的架构如图中所示,简单来讲,RAG就是通过检索获取相关的知识并将其融入Prompt,让大模型能够参考相应的知识从而给出合理回答。因此,可以将RAG的核心理解为“检索+生成”,前者主要是利用向量数据库的高效存储和检索能力,召回目标知识;后者则是利用大模型和Prompt工程,将召回的知识合理利用,生成目标答案。
引言 随着大语言模型(LLM)的快速发展,检索增强生成(Retrieval-Augmented Generation, RAG)技术已成为构建知识密集型 AI 应用的关键方法。本文将深入介绍 RAG 应用开发中的核心环节 - 文档处理,重点讲解 LangChain 框架中的文档处理组件和工具。 RA
本篇文章将基于LangChain实现三种高级检索方法,句子窗口检索和自动合并检索旨在改善RAG流程的召回过程中存在的信息残缺的问题,而多路召回检索则保证了在多个文档中检索召回的准确性。 二、先验知识 ●RAG简要流程 加载文档——切分划片——嵌入为向量表示——存入数据库 ...
【摘要】 【AIGC】一篇彻底搞懂RAG:基于pgVector和LangChain构建RAG服务 前言 一、创建Neon 二、创建Flutter 三、索引 1.加载 2.分割和词化 3.存储 四、检索 小结 前言 检索增强生成 (RAG) 是一种技术,它通过使用来自外部来源的事实来增强生成式 AI 模型的知识库,从而提高其准确性和可靠性。RAG 使大型语言模...
LangChain是一个专注于大模型应用开发的平台,它提供了一系列的组件和工具,帮助你轻松地构建RAG应用。LangChain提供了以下的组件来帮助你构建RAG应用:数据加载器(DocumentLoader):数据加载器是一个对象,可以从一个数据源加载数据,并将其转换为文档(Document)对象。一个文档对象包含两个属性:page_content(str)...
今天,就利用 langchain 和大家一起搭建一个最简单的 RAG 系统,一起来学习一下吧。 langchain 安装 目前,langchain 的版本已经更新到 0.1.X,建议使用最新的稳定版本,不然之前的代码会出现兼容性的问题。 Retrieval | ️ LangChain RAG 原理解析 RAG 的原理已经有很多文章都提到了,这里我们再...