什么是Agentic RAG经典RAG应用的范式与架构已经非常流行,你甚至可以在很短的时间内借助成熟框架开发一个...
自从Neo4j宣布与LangChain的集成以来,我们已经看到许多围绕使用 Neo4j 和大语言模型(LLM)构建检索增强生成(RAG)系统的用例。这导致了近年来知识图谱在 RAG 中使用的快速增加。基于知识图谱的 RAG 系统在处理幻觉方面的表现似乎优于传统的 RAG 系统。我们还注意到,使用基于代理的系统可以进一步增强 RAG 应用程序。为此,...
存储[](https://python.langchain.com/docs/use_cases/question_answering/#step-3.-store"直达第三步。存储")现在我们已经在内存中有了66个文本块,我们需要将它们存储和索引,以便在我们的RAG应用程序中稍后进行搜索。这样做的最常见方式是嵌入每个文档分割的内容,并将这些嵌入上传到向量存储器中。 然后,当我们想...
RAG的架构如图中所示,简单来讲,RAG就是通过检索获取相关的知识并将其融入Prompt,让大模型能够参考相应的知识从而给出合理回答。因此,可以将RAG的核心理解为“检索+生成”,前者主要是利用向量数据库的高效存储和检索能力,召回目标知识;后者则是利用大模型和Prompt工程,将召回的知识合理利用,生成目标答案。 RAG架构 完整...
引言 随着大语言模型(LLM)的快速发展,检索增强生成(Retrieval-Augmented Generation, RAG)技术已成为构建知识密集型 AI 应用的关键方法。本文将深入介绍 RAG 应用开发中的核心环节 - 文档处理,重点讲解 LangChain 框架中的文档处理组件和工具。 RA
LangChain为RAG应用程序提供了从简单到复杂的所有构建块,本文要学习的数据连接(Retrieval)模块包括与检索步骤相关的所有内容,例如数据的获取、切分、向量化、向量存储、向量检索等模块(见下图)。 1. Document loaders 文档加载模块 LangChain封装了一系列类型的文档加载模块,例如PDF、CSV、HTML、JSON...
LangChain是一个专注于大模型应用开发的平台,它提供了一系列的组件和工具,帮助你轻松地构建RAG应用。LangChain提供了以下的组件来帮助你构建RAG应用:数据加载器(DocumentLoader):数据加载器是一个对象,可以从一个数据源加载数据,并将其转换为文档(Document)对象。一个文档对象包含两个属性:page_content(str)...
本篇文章将基于LangChain实现三种高级检索方法,句子窗口检索和自动合并检索旨在改善RAG流程的召回过程中存在的信息残缺的问题,而多路召回检索则保证了在多个文档中检索召回的准确性。 二、先验知识 ●RAG简要流程 加载文档——切分划片——嵌入为向量表示——存入数据库 ...
(聊天输入 + RAG模式选择器) 应用程序 2 - 加载器 UI: http://localhost:8502 数据库客户端: http://localhost:7474 •导入特定标签的最近Stack Overflow数据到一个知识图谱中•嵌入问题和答案并将它们存储在向量索引中•UI:选择标签,运行导入,查看进度,数据库中数据的一些统计信息•加载高排名的问题(不...
在RAG中,LLM(Large Language Model)是指一个大规模的预训练语言模型,它的作用是根据用户的问题和检索到的文档,生成最合适的答案,这一过程又称为数据整合(Data Integration)。LLM的优势在于它能够利用海量的文本数据进行自我学习,从而具备强大的语言理解和生成能力。然而,LLM也存在一些问题,例如LLM可能会产生...