P_{k|k} = (I - K_k J_H) P_{k|k-1} 4 无迹卡尔曼滤波UKF 对于非线性问题的处理,过程模型F和测量模型H是非线性的,EKF是求一阶全导数得到线性模型,来近似非线性模型;而UKF是直接寻找一个与真实分布近似的高斯分布,没有用线性表征。 4.1 参考文章及代码 概率机器人——扩展卡尔曼滤波、无迹卡尔曼...
1. **卡尔曼滤波算法**:- KF主要公式:[公式]、[公式]、[公式]、[公式]和[公式],基于状态转移和观测模型预测和更新状态估计。- EKF通过CTRV和CTRA运动模型的雅各比矩阵推导,Q矩阵设置的原理也得以阐明。2. **自适应与扩展**:- 自适应卡尔曼滤波(AKF)通过历史数据动态调整R和Q矩阵,但AKF...
可以看到,UKF之类(还有一个CKF,就是去掉UKF中的中心点,只采样2n个Sigma Point的方法)的方法实际上并没有将非线性函数线性化,二是用矩匹配以及取样本点的方法来得到一个近似的高斯分布来逼近原来的分布,其核心思想是认为逼近一个分布比起逼近一个非线性函数更简单,可以理解为一种”统计线性...
UKF算法是对非线性函数的概率密度分布进行了近似,用一系列确定样本来逼近状态的后验概率密度,而不是对非线性函数进行近似,不需要对雅可比矩阵进行求导。同时,UKF没有把高阶项忽略,因此对于非线性分布的统计量有较高的计算精度,有效地克服了EKF的估计精度低、稳定性差的问题。 四、交互多模型卡尔曼滤波 在kalman滤波...
1.2 EKF算法 2扩展卡尔曼滤波算法 首先定义状态转换方程和观测方程xk′=f(xk−1)+ukzk=h(xk′)...
一、原始卡尔曼滤波算法(KF)、扩展卡尔曼滤波算法(EKF)以及无迹卡尔曼滤波算法(UKF)三者之间的区别 1.如果本来就是线性高斯的系统,那么其实贝叶斯滤波中预测步和更新步中所用到的某些概率分布本身就是高斯分布,不需要逼近,此时本身就能够解析地递推计算,算出来的结果就是KF,因为它取得是后验期望,所以此时KF在MAP...
【数据融合】【状态估计】基于KF、UKF、EKF、PF、FKF、DKF卡尔曼滤波KF、无迹卡尔曼滤波UKF、拓展卡尔曼滤波数据融合研究(Matlab代码实现), 视频播放量 19、弹幕量 0、点赞数 0、投硬币枚数 0、收藏人数 0、转发人数 0, 视频作者 荔枝科研社, 作者简介 编程与仿真领域爱好
$$ \begin{array}{c} P\left(\boldsymbol{x}{k},z_k \mid \boldsymbol{x}{0}, \bold...
3UKF滤波算法UKF=UT+KF,算法的实现分成两步走: (1)状态的时间更新 选定状态的个Sigma点; 利用UT变换计算后验均值和方差...,可以看出,Adaptive-UKF在估计误差上与UKF滤波相差不大,而且,它并不需要指定状态转移噪声和观测噪声的参数,将更有利于在实际中的应用。 6总结从整体上看,UKF滤波算法是一个比较优秀的 ...
KF针对于线性高斯的情况,EKF针对于非线性高斯,其是将非线性部分进行一阶泰勒展开,因此忽略了高阶项,误差较大,UKF是将UT变换与KF结合的产物,它的基础理念是接近一个非线性函数的概率分布非接近其本身更简单。后两种卡尔曼是针对同一问题的不同思路的解决方案,其实UKF的能力已经跳出了非线性高斯的范围,其也可以解决...