可以对比EKF的算法,形式都是一样的,就不详细解释了,只补充以下算法中的两个简单的变换步骤 UKF相比于EKF的精度更高一些,其精度相当于二阶泰勒展开,但速度会略慢一点。UKF另一个巨大优势是不需要计算雅克比矩阵,而有些时候雅克比矩阵也确实的我们无法获得的。 另外UKF与PF(粒子滤波)也有相似之处,只是无迹变换中...
EKF、UKF和SLAM都是状态估计领域的重要技术。EKF适用于非线性程度较低的系统,UKF则具有更高的精度和稳定性,适用于非线性程度较高的系统。SLAM技术则让机器人或自主系统能够在未知环境中进行定位和建图,为各种应用提供了强大的支持。在选择具体的算法和技术时,需要根据实际应用场景和系统特性进行综合考虑。 2 运行结果...
3.EKF的逼近方法就是把非线性的系统线性化,利用的是泰勒展开,是函数/解析线性化的方法,线性化之后,由于高斯分布的线性变换依然是高斯分布,所以我们就直接可以按照之前的KF的方式往下算了,所以当系统的非线性程度越小时,EKF效果越好。 4.UKF的逼近方法则是采用的矩匹配(Moment Matching)方法,...
UKF算法是对非线性函数的概率密度分布进行了近似,用一系列确定样本来逼近状态的后验概率密度,而不是对非线性函数进行近似,不需要对雅可比矩阵进行求导。同时,UKF没有把高阶项忽略,因此对于非线性分布的统计量有较高的计算精度,有效地克服了EKF的估计精度低、稳定性差的问题。 四、交互多模型卡尔曼滤波 在kalman滤波...
非线性卡尔曼滤波器 ——EKF与UKF 目录 前言 扩展卡尔曼滤波 无损卡尔曼滤波 Matlab仿真 一、前言 •卡尔曼滤波(Kalmanfiltering)一种利用线性系统状态方程,通过系统输入输出观测数据,对系统状态进行最优估计的算法。•适用于线性、离散和有限维系统。一、前言 •实际应用中,非线性的现象是十分普遍的,此 时...
EKF与UKF EKF与UKF 一、引言 严格说来,所有的系统都是非线性的,其中许多还是强非线性的。因此,非线性系统估计问题广泛存在于飞行器导航、目标跟踪及工业控制等领域中,具有重要的理论意义和广阔的应用前景。可以说,所有的非线性估计都是近似的,都只能得到次优估计。非线性估计的核心就在于近似,给出非线性估计方法的...
1、,EKF与UKF,一、背景,普通卡尔曼滤波是在线性高斯情况下利用最小均方误差准则获得目标的动态估计,适应于过程和测量都属于线性系统, 且误差符合高斯分布的系统。 但是实际上很多系统都存在一定的非线性,表现在过程方程 (状态方程)是非线性的,或者观测与状态之间的关系(测量方程)是非线性的。这种情况下就不能使用...
考虑卫星的非线性模型,UKF采用Unscented变换而EKF采用线性化方法对姿态误差进行估计。利用陀螺和磁强计的测量信息,UKF和EKF都可得到三轴稳定卫星的姿态估计值,但UKF的收敛速度高于EKF。数值仿真结果表明,当初始姿态存在大偏差时,所给出的UKF的滤波算法性能明显优于EKF。doi:CNKI:SUN:JSJZ.0.2008-03-016刘星中国科学院...
EKFUKF 近似方法 泰勒展开 无迹变换 被近似处理的对象 非线性函数 非线性函数的概率密度分布 2. 无损变换 UT变换根据确定的采样策略,来近似非线性函数的后验均值和方差。根据采样策略不同,相应的Sigma点及其均值权值和方差权值也不尽相同,因此UT变换的估计精度也会有差异。但总体来说,其估计精度能够达到泰勒级数展开...
非线性卡尔曼滤波器 ——EKF与UKF 目录 前言 扩展卡尔曼滤波 无损卡尔曼滤波 Matlab仿真 一、前言 •卡尔曼滤波(Kalmanfiltering)一种利用线性系统状态方程,通过系统输入输出观测数据,对系统状态进行最优估计的算法。•适用于线性、离散和有限维系统。一、前言 •实际应用中,非线性的现象是十分普遍的,此 时...