简介: 【阿旭机器学习实战】【19】如何在不减少分辨率的情况下降低图片存储空间?K-Means算法进行图片颜色点分类存储 前言 在如今的互联网时代,网络上充满了海量的数据,当然也包括很多图片。因此图像压缩技术对于压缩图像和减少存储空间变得至关重要。 本文我们将使用无监督学习算法K-means聚类算法通过对图片颜色点进行...
由于项目的需要,需要搜集一批有标签的图片,但是人力没有那么多,无法对图片进行分类,所以就先用无监督的方法对用机器对图片自动分类,先富集一批数据,然后再对模型进行训练,于是就想到了k-means算法,但是图片需要提取特征,于是想到了使用SIFT来对图片进行提取特征,提取的方法使用OpenCV的库来进行提取 废话不多说,看代码:...
还需要Kmeans算法对所有图片的feature集的总和做一次聚类,得到km_k个类别的中心feature,即生成km_k个“单词”的“单词表”,并以此中心feature代替一个类别内的所有其他feature,从而将一个图片“文档”中的所有feature均在“单词表”中能够找到代表它的“单词”,这样图片就真正转换为了LDA能够处理的“文档”。
基于SIFT+Kmeans+LDA的图片分类器的实现源码 博文参考:http://www.cnblogs.com/freedomshe/archive/2012/04/24/2468747.html-The pictures classifier based on SIFT, Kmeans and LDA. Blog Reference: http://www.cnblog
使用K均值聚类算法将图片相似的颜色归为不同的” k”个聚类(例如k = 64),每个簇质心(RGB值)代表其各自簇的RGB颜色空间中的颜色矢量。 根据Kmeans算法找出图片上每个像素点对应的簇质心(RGB值)的标号值。 图片存储时,我们只需存储每个像素的标签编号, 并保留每个聚类中心的颜色向量的记录,根据编号及这个聚类中心...
分类器通过SIFT算法将图片转换为若干feature,即将图片看成是“文档”feature看成是“单词”。而仅通过SIFT处理后的feature并不能直接单做“单词”作为LDA的输入,因为几乎每个feature都不一样,还需要Kmeans算法对所有图片的feature集的总和做一次聚类,得到km_k个类别的中心feature,即生成km_k个“单词”的“单词表”,...
4.Step2——Kmeans应用 5.Step3——数词频的实现 6.Step4——LDA应用 7.参考 一、实现思路 分类器的功能是:输入一组图片,给定需要分类的类别数lda_k(>1);输出lda_k个文件夹,每个文件夹内的图片为一类图片。 第一步是SIFT特征提取:输入图片,输出图片的特征点集,即feature列表,每个feature代表一个图片的某个...