model | JsonOutputParser() ) # Due to a bug in older versions of Langchain, JsonOutputParser did not stream results from some models async for text in chain.astream( 'output a list of the countries france, spain and japan and their populations in JSON format. Use a dict with an outer...
编写代码 fromlangchain_core.output_parsersimportJsonOutputParserfromlangchain_openai.chat_modelsimportChatOpenAIasyncdefmain():model=ChatOpenAI(model="gpt-3.5-turbo",)chain=(model|JsonOutputParser())# Due to a bug in older versions of Langchain, JsonOutputParser did not stream results from some ...
publicstaticvoidmain(String[]args)throws IOException{JsonFactory factory=newJsonFactory();// 此处最终输输出到OutputStreams输出流(此处输出到文件)JsonGenerator jsonGenerator=factory.createGenerator(newFile("java-jackson/src/main/resources/person.json"),JsonEncoding.UTF8);jsonGenerator.writeStartObject();/...
通过输出解析器输出 json 格式数据 fromlangchain.output_parsersimportResponseSchema, StructuredOutputParserfromlangchain_community.llms.ollamaimportOllamafromlangchain_core.promptsimportPromptTemplate llm= Ollama(model="qwen:7b")#你希望你的回复结构模板response_schems =[#定义返回字段ResponseSchema(name="use...
JSONLint is the free online validator, json formatter, and json beautifier tool for JSON, a lightweight data-interchange format. You can format json, validate json, with a quick and easy copy+paste.
https://python.langchain.com/docs/modules/model_io/output_parsers/pydantic 比如我们构建如下json对象: 通过langchain的 Pydantic (JSON) parser构造如下: 解析方式同上,这里不做过多介绍。 另外,如果我们在使用parser的过程中出现了格式问题,langchain还贴心的提供了一个OutputFixingParser。也就是说当第...
from llm2json.output import JSONParser ernieResult = ernieChat(template) parser = JSONParser() pprint(parser.to_dict(ernieResult)) {'context': ' 文心牌润唇膏,拥有独特的保湿配方,能够深层滋润双唇,让唇部肌肤水润有光泽。 轻轻一抹,唇膏质地滑顺,不会产生厚重感,同时为唇部提供持久保护。 在干...
JsonParser; JsonParser parser = new JsonParser(); JsonElement 如何在JSON中处理大数据? 使用流式JSON解析器 流式JSON解析器可以逐步解析JSON数据,而不是一次性将整个JSON数据读入内存中。这可以显著降低内存占用和提高性能。在Java中可以使用Jackson、Gson等流式JSON解析器库。 使用压缩算法 可以使用压缩算法来减小...
["input"], output_parser=RouterOutputParser(), ) router_chain = LLMRouterChain.from_llm(llm, router_prompt) chain = MultiPromptChain( router_chain=router_chain, destination_chains=destination_chains, default_chain=default_chain, verbose=True, ) print(chain.run("What is black body radiation?"...
The parser then returns this error: OutputParserException [Error]: Failed to parse. Text: "{{"phoneNumber": "xxxxxxxxxx"}}". Error: SyntaxError: Unexpected token { in JSON at position 1 The output is: '{{"phoneNumber": "xxxxxxxxxx"}}' Note: xxxxxxxxxx is the redacted phone number....