@ 1、二叉搜索树 1.1、 基本概念 二叉树的一个性质是一棵平均二叉树的深度要比节点个数N小得多。分析表明其平均深度为$\mathcal(\sqrt)\(,而对于特殊类型的二叉树,即二叉查找树(binary search tree),其深度的平均值为\)\mathcal(log N)$。 二叉查找
publicTreeNode creatSearchBinaryTree(intdata) { TreeNode node =null; TreeNode parent =null; if(root ==null) { node =newTreeNode(data); root = node; } node = root; while(node !=null) { parent = node; if(data > node.data) { node = node.rightChild; }elseif(data < node.data)...
1. 二叉查找树概念 二叉查找树,全称为Binary Search Tree,简称BST。从名字中我们容易理解,二叉查找树是在二叉树的基础上,同时具备了某些特性的一种特殊的二叉树型结构。二叉查找树相较于二叉树,额外满足以下几个条件: (1). 若左子树不为空,则左子树上的所有结点的值均小于根结点位置上的值; (2). 若右子树...
二叉搜索树(Binary Search Tree) 二叉搜索树(英语:Binary Search Tree),也称为二叉查找树、有序二叉树(ordered binary tree)或排序二叉树(sorted binary tree),是指一棵空树或者具有下列性质的二叉树: 若任意节点的左子树不空,则左子树上所有节点的值均小于它的根节点的值; 若任意节点的右子树不空,则右子树上...
1.二叉搜索树(Binary Search Tree):(又:二叉查找树,二叉排序树)它或者是一棵空树,或者是具有下列性质的二叉树: 若它的左子树不空,则左子树上所有结点的值均小于它的根结点的值; 若它的右子树不空,则右子树上所有结点的值均大于它的根结点的值; 它的左、右子树也分别为二叉排序树。2.建二叉树 ...
二叉查找树,全称为Binary Search Tree,简称BST。从名字中我们容易理解,二叉查找树是在二叉树的基础上,同时具备了某些特性的一种特殊的二叉树型结构。二叉查找树相较于二叉树,额外满足以下几个条件: (1). 若左子树不为空,则左子树上的所有结点的值均小于根结点位置上的值; ...
二叉排序树(Binary Sort Tree),又称二叉查找树(Binary Search Tree),亦称二叉搜索树。是数据结构中的一类。在一般情况下,查询效率比链表结构要高。如我先前所言,这里我们又提到了链表,如果看过前面文章的小伙伴可以加深对链表的理解。 二叉排序树特点 元素不能重复...
如果我们给二叉树加一个额外的条件,就可以得到一种被称作二叉搜索树(binary search tree)的特殊二叉树。 二叉搜索树要求:若它的左子树不空,则左子树上所有结点的值均小于它的根结点的值; 若它的右子树不空,则右子树上所有结点的值均大于它的根结点的值; 它的左、右子树也分别为二叉排序树。
我理解的数据结构(五)—— 二分搜索树(Binary Search Tree) 一、二叉树 和链表一样,动态数据结构 具有唯一根节点 每个节点最多有两个子节点 每个节点最多有一个父节点 具有天然的递归结构 每个节点的左子树也是二叉树 每个节点的右子树也是二叉树 一个节点或者空也是二叉树 ...
二叉查找树(Binary Search Tree),又被称为二叉搜索树。 它是特殊的二叉树:对于二叉树,假设x为二叉树中的任意一个结点,x节点包含关键字key,节点x的key值记为key[x]。如果y是x的左子树中的一个结点,则key[y] <= key[x];如果y是x的右子树的一个结点,则key[y] >= key[x]。那么,这棵树就是二叉查找...