@ 1、二叉搜索树 1.1、 基本概念 二叉树的一个性质是一棵平均二叉树的深度要比节点个数N小得多。分析表明其平均深度为$\mathcal(\sqrt)\(,而对于特殊类型的二叉树,即二叉查找树(binary search tree),其深度的平均值为\)\mathcal(log N)$。 二叉查找
整体实现的代码如下: 1importjava.util.ArrayDeque;2importjava.util.Collection;3importjava.util.NoSuchElementException;4importjava.util.Queue;5/**6* data structure unbalanced binary search tree7*@authormichael8*@param<E>9*/10publicclassBinarySearchTree<EextendsComparable<E>>{1112/**13* 二叉树节点个...
我理解的数据结构(五)—— 二分搜索树(Binary Search Tree) 一、二叉树 和链表一样,动态数据结构 具有唯一根节点 每个节点最多有两个子节点 每个节点最多有一个父节点 具有天然的递归结构 每个节点的左子树也是二叉树 每个节点的右子树也是二叉树 一个节点或者空也是二叉树 二、二分搜索树 是二叉树 每个节点...
一旦你完成了这个,那么你应该读入lookup.txt文件,并为每个名字查找数字。如果名称存在,则打印到控制台的联系人号码。 如果名称不存在,则打印NOT FOUND。 您应该首先用少量的联系人进行测试。你必须打开什么您的主类包含在目录和查找文件中读取的逻辑,并将查找结果和BST类文件输出到控制台。 你可以让Node类成为一个单...
Java tree数据接口的json java binary tree Java实现二叉查找树(Binary Search Tree) 二叉查找树(英语:Binary Search Tree),也称二叉搜索树、有序二叉树(英语:ordered binary tree),排序二叉树(英语:sorted binary tree),是指一棵空树或者具有下列性质的二叉树:...
二叉查找树(Binary Search Tree),也称有序二叉树(ordered binary tree),排序二叉树(sorted binary tree),是指一棵空树或者具有下列性质的二叉树: 若任意节点的左子树不空,则左子树上所有结点的值均小于它的根结点的值; 若任意节点的右子树不空,则右子树上所有结点的值均大于它的根结点的值; ...
I'm trying to implement a binary search tree class in Java with a method that can rebalance the tree if there's a difference in height. I'm trying to do it by first storing the value of the nodes in an List (an attribute of the class). ...
I am trying to run my Binary Search Tree, I am creating objects of type Employee in my main program which does not seem to give me problems, but when I choose to search for an item in my BST, the program is terminated. System.out.println("Searching the Binary Search Tree"); System...
A binary search tree follows some order to arrange the elements. In a Binary search tree, the value of left node must be smaller than the parent node, and the value of right node must be greater than the parent node. This rule is applied recursively to the left and right subtrees of ...
1. Searching in BST – In a binary search tree, finding the position of a certain element. 2. Insertion in BST – Adding a new element to the binary search tree in the proper location ensures that the binary search tree property is not broken. ...